
© 2024 Arm A
I-

ge
n

er
at

ed
 im

ag
e

Peter Smith

31/01/2024

Linker Scripts in
LLD and how they
compare with GNU
ld

https://fosdem.org/2024/schedule/event/fosdem-2024-2340-linker-scripts-in-lld-and-how-they-compare-with-gnu-ld/
https://fosdem.org/2024/schedule/event/fosdem-2024-2340-linker-scripts-in-lld-and-how-they-compare-with-gnu-ld/
https://fosdem.org/2024/schedule/event/fosdem-2024-2340-linker-scripts-in-lld-and-how-they-compare-with-gnu-ld/

© 2024 Arm

Linker script essentials

What do you need to know to get anything out of
this talk?

3 © 2024 Arm

ELF components

ELF Header

.text

.data

.bss

…

Section header
table

Relocatable Object File

ELF Header

Program Header
Table

Segment 1
Read-only
Executable

Segment 2
Read-write

Section header
table

Executable/Shared-object
• Relocatable objects and

executables/shared-objects
use same file format.

• Sections in relocatable objects
such as .text are consolidated
into larger sections in the
output file.

• Segments contain one or more
sections.

• A segment is described by a
program header.

• Program loaders operate on
segments.

• Section level view present for
debugging.

4 © 2024 Arm

Linker control scripts

A text file written in the linker command language

GNU linker ld.bfd always uses a linker script even if none provided.

LLD and ld.gold have a separate code-path for when there is no linker script.

Command line option -T/--script or as an input file
• When -T/--script used this replaces the default linker script.
• When a linker script is an input file it is combined with all other linker scripts.

Controls how sections from input files (input sections) map to the sections in the output
file (output sections).
• .text : { *(.text .text.*) }

Control the layout of output sections in memory and the section to segment mapping.

5 © 2024 Arm

Linker Script Illustrative example

MEMORY

{

 FLASH (rx) : ORIGIN = 0x0, LENGTH = 0x20000 /* 128K */

 RAM (rwx) : ORIGIN = 0x10000000, LENGTH = 0x2000 /* 8K */

}

SECTIONS

{

 .text : {*(.text*) } >FLASH

 __exidx_start = .;

 .ARM.exidx : { *(.ARM.exidx*) } >FLASH

 __exidx_end = .;

 __etext = ALIGN (4);

 .data : { *(.data) } >RAM AT>FLASH

 .bss : { *(.bss) } >RAM

}

• Define memory sizes and
properties.

• Define output sections

• . is DOT, the location counter

• > assigns output section to memory
region that it will execute in (VMA)

• >AT assigns output section to memory
region that it will load in (LMA)

• ALIGN is a built-in function

6 © 2024 Arm

GNU ld and LLD linker script handling

The GNU linker manual is the closest there is to a specification for linker scripts
• https://sourceware.org/binutils/docs/ld/Scripts.html

Some parts are underspecified, some are implementation defined
• Placement of orphan sections.
• Section to segment mapping.
• Alignment in memory regions.

GNU ld and LLD are moving targets
• Not all features are implemented in LLD.

Sometimes LLD has made a design decision to differ from GNU ld
• https://lld.llvm.org/ELF/linker_script.html#linker-script-implementation-notes-and-policy

https://sourceware.org/binutils/docs/ld/Scripts.html
https://lld.llvm.org/ELF/linker_script.html#linker-script-implementation-notes-and-policy

© 2024 Arm

Orphan Placement

Input sections that are not specified by the script

8 © 2024 Arm

Orphan sections

A linker script does not have to give a complete mapping from input section to output
section.

Input sections that do not match any input section description are called “orphan
sections”.

Linker is expected to automatically find a place for orphan sections

--orphan-handling=[place (default), discard, warn, error] can be
used to alter policy.
• --orphan-handling=warn will tell you where orphans have been placed.

--unique prevents orphan sections with same name from being consolidated.

9 © 2024 Arm

Orphans and linker scripts
SECTIONS

{

 .text : {*(.text .text*) }

 __exidx_start = .;

 .ARM.exidx : { *(.ARM.exidx*) }

 __exidx_end = .;

 .data : { *(.data) }

 .bss : { *(.bss) }

 __end = . ;

}

.section .executable, “ax”, %progbits

.section .read_only, “a”, %progbits

.section .read_write, “aw”, %progbits

.section .zero_init, “aw”, %nobits

.section .noalloc, “”, %progbits

Orphans

10 © 2024 Arm

LLD and GNU ld orphan placement

Both use similar examples but there are differences in detail

Similarities
• Orphans matching an output section name are assigned to that output section.

.foo : { *(.bar) } /* Matches orphans with name .foo */

• New output section created for orphans that don’t match by name.

Output sections and orphans ranked by property flags
• Read-only, executable …

Orphan placed at the after the last output section with the closest rank.

Have to avoid breaking symbol assignments
• start = .; foo : { *(foo) } end = .;
• .foo : { *(.bar); . += 0x1000 ; } /* .foo placed after . expression */

Orphans placed after the last output section placed after all trailing commands.

11 © 2024 Arm

Example difference of orphan placement

SECTIONS {

 .text { *(.text) }

}

.section .read_only, “a”, %progbits

GNU ld

lld

• Without a read-only output section in the Linker Script LLD ranks before
.text and GNU ld after.

• Can be solved by adding at least one output section that contains only
read-only data.

12 © 2024 Arm

Unallocated sections influence on orphan placement

SECTIONS {

 .text : { *(.text) }

 foo : { *(.foo) }

 bar : { *(.bar) }

 baz : { *(.baz) }

 .data : { *(.data) }

 .bss : { *(.bss) }

}

.section .foo, "aw", %progbits

…

.section .bar, “w", %progbits

…

.section .baz, "aw", %progbits

…

• None of the sections are orphans

• The SHF_ALLOC flag “a” is missing from .bar. This is a common oversight.

• LLD will insert linker generated sections like .comment after output section bar.

• GNU ld will place linker generated sections like .comment at the end.

© 2024 Arm

Program Header
generation

Section to segment mapping

14 © 2024 Arm

Elf Segments and Alignment

Segments are described by ELF program headers of type PT_LOAD.

Program Header field Description

p_type Type of program header, PT_LOAD in our case.

p_offset Offset in file of program segment.

p_paddr Physical address of segment (ignored for System V)

p_vaddr Virtual address of segment

p_memsz Size in memory of program segment

p_filesz Size in file of program segment

p_align p_vaddr congruent to p_offset (modulo p_align)

15 © 2024 Arm

Program Header assignment

A PT_LOAD program segment is described by an ELF program header
• Contiguous range of bytes in the file with the same properties

In a System V Operating-System the ELF file will be memory mapped
• Program segments need to be appropriately aligned.
• Content is contiguous in the file and in memory.
• No difference in virtual and physical address.
• Zero-initialized data must follow non-zero initialized data within segment.

In an embedded system the ELF file may not be executed directly
• Program segment contents extracted by a tool like objcopy.
• System may not have virtual memory.
• Virtual and physical address may differ (RW data copied to RAM at startup).
• File contents are contiguous, but memory contents may not be.

16 © 2024 Arm

Influences on program header assignment

VMA to LMA offset of an Output Section
• A single program header can represent many contiguous output sections with the same offset.
• For memory mapped ELF files this is always 0
• Can be altered for an output section using AT(offset) or AT> memory_region.

Changes in properties such as RO to RW
• Configurable by flags as properties can be merged.

Special cases like -zrelro and -zseparate-code

Gaps between compatible output sections
• Extend a single program segment to cover both output sections with padding in between.

17 © 2024 Arm

Simplified layout of an ELF file for a System V AArch64 OS

Text Segment

Data Segment

0x400000

0xe7d0

0x410000

64k Pagep_offset 0x0

p_vaddr 0x400000

p_memsz 0xe7d0

p_align 0x1000

p_offset 0xe7d0

p_vaddr 0x41e7d0

p_memsz 0x268

p_align 0x1000

Read-only
execute

64k Page

0x268

Read-write

Read-write

File

Virtual Memory

• p_offset congruent to p_vaddr (modulo
palign) permits part of the file to be
mmapped twice.

• DATA_SEGMENT_ALIGN in linker scripts.

• MAP_PRIVATE prevents writing to addresses
in read-only page

• Read-write data can be read and executed.

18 © 2024 Arm

-zseparate-code in GNU ld

Read-only

Read-only
executable

Read-only

Read-write
RELRO

GNU ld -zseparate-code

• -zseparate-code isolates read-only
executable segment by padding to a max-page-
size boundary.

• Executable code cannot execute data as code at
expense of larger files and increased memory
usage. Particularly on systems with large page
sizes.

• GNU ld defaults to -zseparate-code, can be
disabled with -zno-separate-code

• DATA_SEGMENT_RELRO_END pads to max-page-
size boundary.

Padding to max-page-size

Padding to max-page-size

Read-only

Read-write

GNU ld -znoseparate-code

Read-write
non-RELRO

Padding to max-page-size

19 © 2024 Arm

-zseparate-code in LLD

Read-only

Read-only
executable

Read-write
RELRO

ld.lld -zseparate-code

Read-write
non-RELRO

Padding to max-page-size

Padding to max-page-size

Padding to common-page-size

Read-write

Read-only

Read-only
executable

• LLD defaults to -znoseparate-code

• LLD doesn’t sandwich the executable segment
between read-only segments

• DATA_SEGMENT_RELRO_END pads to a
common-page-size boundary only.

ld.lld -znoseparate-code

20 © 2024 Arm

Program Segments in embedded systems
MEMORY

{

 FLASH (rx) : ORIGIN = 0x0, LENGTH = 0x20000 /* 128K */

 RAM (rwx) : ORIGIN = 0x10000000, LENGTH = 0x2000 /* 8K */

}

SECTIONS

{

 .text : {*(.text*) } >FLASH

 __exidx_start = .;

 .ARM.exidx : { *(.ARM.exidx*) } >FLASH

 __exidx_end = .;

 __etext = ALIGN (4);

 .data : { *(.data) } >RAM AT>FLASH

 .bss : { *(.bss) } >RAM

}

>FLASH
>AT FLASH

>FLASH

>RAM

>RAM
>AT FLASH

.bss at
runtime

21 © 2024 Arm

LLD Program Header Generation Known problems

LLD address assignment assumes that output sections VMA within a program header
monotonically increase
• Possible to break this assumption using memory regions.
• https://discourse.llvm.org/t/overflow-related-to-program-headers/75150

second_section (0x10000000 +64) : { KEEP (*(.second_in_section)); } > mem
first_section 0x10000000 : { KEEP (*(.first_in_section)); } > mem

GNU ld reorders output sections so that VMA and LMA monotonically increase
• [1] second_section PROGBITS 0000000010000040 001040 000001 00 AX 0 0 1
• [2] first_section PROGBITS 0000000010000000 001000 000001 00 AX 0 0 1

https://discourse.llvm.org/t/overflow-related-to-program-headers/75150

© 2024 Arm

Miscellaneous
Differences

23 © 2024 Arm

Symbol assignment differences

Dot assignment within an output section
• .section : { *(.text); . = 4; *(.text.*) }
• In GNU ld symbol assignments in an output section are relative to the start of the output section.
• In lld it assigns the location counter to the value, normally provoking an error message.

This is also the case for named symbols
• .section : { *(.text); foo = 4; *(.text.*) }
• In GNU ld foo is a section relative symbol with value of .section + 4.
• In lld foo is an absolute symbol defined to 4.

For portability
• Use . += <value> to move the location counter
• Define a symbol at the current location counter foo = .;

© 2024 Arm

References

25 © 2024 Arm

References

MaskRay’s blog posts
• https://maskray.me/blog/2020-11-15-explain-gnu-linker-options
• https://maskray.me/blog/2020-12-19-lld-and-gnu-linker-incompatibilities
• https://maskray.me/blog/2023-12-17-exploring-the-section-layout-in-linker-output

GNU documentation
• https://sourceware.org/binutils/docs/ld/Scripts.html

LLD documentation
• https://lld.llvm.org/ELF/linker_script.html

LLVM Bugzilla (archive)
• https://bugs.llvm.org/show_bug.cgi?id=42327 lld and GNU ld orphan handling difference

GNU Bugzilla and patch notes
• https://sourceware.org/bugzilla/show_bug.cgi?id=28824 relro security issues

Has a good description of max-page-size and common-page-size

https://maskray.me/blog/2020-11-15-explain-gnu-linker-options
https://maskray.me/blog/2020-12-19-lld-and-gnu-linker-incompatibilities
https://maskray.me/blog/2023-12-17-exploring-the-section-layout-in-linker-output
https://sourceware.org/binutils/docs/ld/Scripts.html
https://lld.llvm.org/ELF/linker_script.html
https://bugs.llvm.org/show_bug.cgi?id=42327
https://sourceware.org/bugzilla/show_bug.cgi?id=28824

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

ధన్యవాదములు
© 2024 Arm

© 2024 Arm

Backup

28 © 2024 Arm

LLD Program Header Generation

Create a new program header if next Output Section
• Program header flags are different (read-only, writeable, executable).
• Different memory region (given by > region).
• Different LMA memory region (given by AT> region or AT(address)).
• Previous output section was SHT_NOBITS and this one is SHT_PROGBITS.

LLD address assignment assumes that output sections VMA within a program header
monotonically increase
• Possible to break this assumption using memory regions.
• https://discourse.llvm.org/t/overflow-related-to-program-headers/75150

second_section (0x10000000 +64) : { KEEP (*(.second_in_section)); } > mem
first_section 0x10000000 : { KEEP (*(.first_in_section)); } > mem

LLD writes SHT_NOBITS contents to file as 0 if followed by SHT_PROGBITS

https://discourse.llvm.org/t/overflow-related-to-program-headers/75150

29 © 2024 Arm

GNU ld and program header creation

Output sections are sorted by ascending LMA, then VMA

Create a new program header if next Output Section
• VMA to LMA offset is different.
• LMA overlaps with previous section LMA range [LMA, LMA + LMA size).
• Would cause a page to be skipped within the segment.
• If paged, section is writeable and previous section was read-only.

GNU ld reorders output sections so that VMA and LMA monotonically increase
• [1] second_section PROGBITS 0000000010000040 001040 000001 00 AX 0 0 1
• [2] first_section PROGBITS 0000000010000000 001000 000001 00 AX 0 0 1

30 © 2024 Arm

Alignment when VMA != LMA

SECTIONS {
.a : {
begin = .;
*(.a)
} > VMA_REGION AT > LMA_REGION
.b : {
*(.b)
} > VMA_REGION AT > LMA_REGION
.c : {
*(.c)
end = .;
} > VMA_REGION AT > LMA_REGION

Padding

Padding

GNU ld
LMA

VMA

Padding

Padding

GNU ld LMA
ALIGN_WITH_INPUT

Padding

Padding

LLD LMA
naturally aligned

• GNU ld default no LMA alignment

• GNU ld ALIGN_WITH_INPUT uses VMA
alignment padding

• LLD naturally aligns in LMA

31 © 2024 Arm

Evaluation

GNU ld default produces smallest LMA size, but:
• Requires an individual copy of each OutputSection to VMA.
• Copy cannot assume alignment of source (for example a 16-byte aligned vector copy).

GNU ld with align_with_input replicates VMA padding
• Whole memory region can be copied in one go.
• OutputSections not guaranteed to be naturally aligned in LMA.

LLD naturally aligns in LMA
• If VMA and LMA not congruent (modulo alignment) then cannot copy whole memory region in one.
• Output sections guaranteed to be naturally aligned.
• Possible to generate large gap

All implementation choices reasonable
• Won’t matter much for small alignments
• Users sometimes (ab)use large alignments to place sections, could result in large binaries.
• Could offer an option for ld.bfd alignment, with support for ALIGN_WITH_INPUT

32 © 2024 Arm

Alignment of 0 size OutputSections in LMA

https://github.com/llvm/llvm-project/issues/64571

Source is a zero-sized OutputSection with ALIGN directive
• .output_section : ALIGN(16) { … }

GNU ld does not emit the 0 sized section into LMA, no additional padding

LLD adds the padding to naturally align

Opportunity to optimize.

Likely similar case in https://github.com/llvm/llvm-project/issues/65159
• 0 sized section with lower VMA added to same program header causing negative file offset.

https://github.com/llvm/llvm-project/issues/64571
https://github.com/llvm/llvm-project/issues/65159

33 © 2024 Arm

TLS local exec alignment

TCB .tdata .tbsspad

Thread
Poiner TP

• ELF file contains .tdata and .tbss

• PT_TLS program header for dynamic linking

• Linker defined symbols for embedded systems

• Linker and library must agree on size of alignment padding for TLS

• Newlib/picolibc use MAX(2*wordsize , MAX(ALIGNOF(.tdata, ALIGNOF(.tbss))))

• LLD uses more complex expression that saves padding if overaligned .tbss

• s.getVA(0) + config->wordsize * 2 + ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));

• Does not match libraries calculation.

• Linker defined symbol for TLS padding that library can use if defined?

	Slide 1: Linker Scripts in LLD and how they compare with GNU ld
	Slide 2: Linker script essentials
	Slide 3: ELF components
	Slide 4: Linker control scripts
	Slide 5: Linker Script Illustrative example
	Slide 6: GNU ld and LLD linker script handling
	Slide 7: Orphan Placement
	Slide 8: Orphan sections
	Slide 9: Orphans and linker scripts
	Slide 10: LLD and GNU ld orphan placement
	Slide 11: Example difference of orphan placement
	Slide 12: Unallocated sections influence on orphan placement
	Slide 13: Program Header generation
	Slide 14: Elf Segments and Alignment
	Slide 15: Program Header assignment
	Slide 16: Influences on program header assignment
	Slide 17: Simplified layout of an ELF file for a System V AArch64 OS
	Slide 18: -zseparate-code in GNU ld
	Slide 19: -zseparate-code in LLD
	Slide 20: Program Segments in embedded systems
	Slide 21: LLD Program Header Generation Known problems
	Slide 22: Miscellaneous Differences
	Slide 23: Symbol assignment differences
	Slide 24: References
	Slide 25: References
	Slide 26
	Slide 27: Backup
	Slide 28: LLD Program Header Generation
	Slide 29: GNU ld and program header creation
	Slide 30: Alignment when VMA != LMA
	Slide 31: Evaluation
	Slide 32: Alignment of 0 size OutputSections in LMA
	Slide 33: TLS local exec alignment

