
ROCgdb, GDB and

AMDGPU debugging

Lancelot SIX

2 |

[Public]

Agenda

• AMDGPU architecture overview and programming model.

• ROCgdb.

• State of AMDGPU support in upstream GDB.

3 |

[Public]

Abstract AMDGPU architecture

• Multiple processing elements form a compute unit.

• Multiple compute units form a GPU.

4 |

[Public]

The HIP "hello world"

#include <hip/hip_runtime.h>

__global__ void
kern (int *arr) {

 arr[blockIdx.x * blockDim.x + threadIdx.x] += 2;

}

int
main () {
 const size_t block_size = 64, blocks = 16,
 size = block_size * blocks;

 std::array<int, size> data = {};

 int *device_ptr;

 hipMalloc (&device_ptr, size * sizeof (int));

 hipMemcpyHtoD (device_ptr, data.data (), size * sizeof (int));

 kern<<<blocks, block_size>>> (device_ptr);

 hipMemcpyDtoH (data.data (), device_ptr, size * sizeof (int));

 return EXIT_SUCCESS;

}

GPU/device code

CPU/host code

5 |

[Public]

Host threads and GPU threads (waves) under single inferior

• Waves are mapped to threads in GDB.

• Same program with unified memory.

(gdb) info threads
 Id Target Id Frame
 1 Thread 0x7ffff7e69a80 (LWP 152926) "a.out" 0x…f41 in ?? () from …/libhsa-runtime64.so.1
 2 Thread 0x7fffeb3ff640 (LWP 152929) "a.out" __GI___ioctl (fd=3, request=3222817548) …
 5 Thread 0x7ffff62d7640 (LWP 152933) "a.out" __GI___ioctl (fd=3, request=3222817548) …

* 6 AMDGPU Wave 1:1:1:1 (0,0,0)/0 "a.out" kern (arr=0x7fffe9c00000) at simple.cpp:5
 7 AMDGPU Wave 1:1:1:2 (0,0,0)/1 "a.out" kern (arr=0x7fffe9c00000) at simple.cpp:5
 8 AMDGPU Wave 1:1:1:3 (1,0,0)/0 "a.out" kern (arr=0x7fffe9c00000) at simple.cpp:5
 …

6 |

[Public]

GPU Threads (waves)'s Target Id

(gdb) info threads

…

 /- agent

 | /- queue

 | | /- dispatch

 | | | /- wave id

 | | | |

 6 AMDGPU Wave 1:1:1:1 (0,0,0)/0 "a.out" kern (arr=0x7fffe9c00000) at simple.cpp:5

 ^^^^^ |

 | \- wave number in work group

 \- work group coordinates in work grid

…

• "info {agent, queue, dispatch}" commands also available.

7 |

[Public]

Lanes

New entity under threads: threads become vectorized, multiple
lanes under one thread.

GDB threads are mapped to GPU waves. All lanes

progress side-by-side forming a wavefront.

One physical PC for the whole thread (for all lanes), but:

• Each lane works with its own slice of the register set, on its
share of data, its version of locals in scope.

• Lanes can be seen as multiple "regular" threads running in
lockstep.

"current lane" concept added (augmenting "current inferior",

"current thread"). …VGPR 0

…VGPR 1

…VGPR 255

…

Variable

X

Single Source
Language Thread

SIMD/SIMT Execution Model

Lane 0 Lane 1 Lane 3Lane 2 Lane 4 Lane 5 Lane 63

8 |

[Public]

Lanes commands

(gdb) info lanes

 Id State Target Id Frame

* 0 A AMDGPU Lane 1:1:1:1/0 (0,0,0)[0,0,0] kern (arr=0x7fffe9c00000) …

 1 A AMDGPU Lane 1:1:1:1/1 (0,0,0)[1,0,0] kern (arr=0x7fffe9c00000) …

 2 A AMDGPU Lane 1:1:1:1/2 (0,0,0)[2,0,0] kern (arr=0x7fffe9c00000) …

 3 A AMDGPU Lane 1:1:1:1/3 (0,0,0)[3,0,0] kern (arr=0x7fffe9c00000) …

 4 A AMDGPU Lane 1:1:1:1/4 (0,0,0)[4,0,0] kern (arr=0x7fffe9c00000) …

 5 A AMDGPU Lane 1:1:1:1/5 (0,0,0)[5,0,0] kern (arr=0x7fffe9c00000) …

 6 A AMDGPU Lane 1:1:1:1/6 (0,0,0)[6,0,0] kern (arr=0x7fffe9c00000) …
…
 31 A AMDGPU Lane 1:1:1:1/31 (0,0,0)[31,0,0] kern (arr=0x7fffe9c00000) …
(gdb) lane 8

[Switching to thread 6, lane 8 (AMDGPU Lane 1:1:1:1/8 (0,0,0)[8,0,0])]

#0 kern (arr=0x7fffe9c00000) at simple.cpp:5

5 arr[blockIdx.x * blockDim.x + threadIdx.x) += 2;

9 |

[Public]

SIMT Lanes's Target Id

 /- agent

 | /- queue

 | | /- dispatch

 | | | /- wave id

 | | | |

 | | | |

 AMDGPU Lane 1:1:1:1/8 (0,0,0)[8,0,0] kern (arr=0x7fffe9c00000) at simple.cpp:5

 | ^^^^^ ^^^^^

 | | |

 | | \- work item coordinates in work group

 | \- work group coordinates in work grid

 \- lane index

10 |

[Public]

SIMT and Lane divergence

// if (foo (lid)) {

 NoOp;

// } else {

 elem = in[lid] + 3;

// }

if (foo (lid)) {

elem = in[lid] + 1;

} else {

elem = in[lid] + 3;

}

// if (foo (lid)) {

 elem = in[lid] + 1;

// } else {

 NoOp;

// }

L0 L1 L2 L3 L4 L5 L6 L7 ... L64

L2 L3 L4 L5 L6 L7 L8 L0 L1 L9 L10 L11 ... L64

Else lanes Then lanes

11 |

[Public]

Without lane divergence support, step 1

Stepping stops in all branches => surprising

 __device__ void

 function (unsigned tid, const int *in, int *out)

 {

 int elem;

>> (1) if (tid % 2) <<<<<<<<<

 (3) elem = in[tid] + 1;

 else

 (2) elem = in[tid] + 3;

 (4) atomicAdd (out, elem);

 }

12 |

[Public]

Without lane divergence support, step 2

Stepping stops in all branches => surprising

 __device__ void

 function (unsigned tid, const int *in, int *out)

 {

 int elem;

 (1) if (tid % 2)

 (3) elem = in[tid] + 1;

 else

>> (2) elem = in[tid] + 3; <<<<<<<<<

 (4) atomicAdd (out, elem);

 }

13 |

[Public]

Without lane divergence support, step 3

Stepping stops in all branches => surprising

 __device__ void

 function (unsigned tid, const int *in, int *out)

 {

 int elem;

 (1) if (tid % 2)

>> (3) elem = in[tid] + 1; <<<<<<<<<

 else

 (2) elem = in[tid] + 3;

 (4) atomicAdd (out, elem);

 }

14 |

[Public]

Without lane divergence support, step 4

Stepping stops in all branches => surprising

 __device__ void

 function (unsigned tid, const int *in, int *out)

 {

 int elem;

 (1) if (tid % 2)

 (3) elem = in[tid] + 1;

 else

 (2) elem = in[tid] + 3;

>> (4) atomicAdd (out, elem); <<<<<<<<<

 }

15 |

[Public]

With lane divergence support, step 1

Stepping doesn't stop if current lane is inactive => intuitive

 __device__ void

 function (unsigned tid, const int *in, int *out)

 {

 int elem;

>> (1) if (tid % 2) <<<<<<<<<

 (X) elem = in[tid] + 1;

 else

 (2) elem = in[tid] + 3;

 (3) atomicAdd (out, elem);

 }

16 |

[Public]

With lane divergence support, step 2

Stepping doesn't stop if current lane is inactive => intuitive

 __device__ void

 function (unsigned tid, const int *in, int *out)

 {

 int elem;

 (1) if (tid % 2)

 (X) elem = in[tid] + 1;

 else

>> (2) elem = in[tid] + 3; <<<<<<<<<

 (3) atomicAdd (out, elem);

 }

17 |

[Public]

With lane divergence support, step 3

Stepping doesn't stop if current lane is inactive => intuitive

 __device__ void

 function (unsigned tid, const int *in, int *out)

 {

 int elem;

 (1) if (tid % 2)

 (X) elem = in[tid] + 1;

 else

 (2) elem = in[tid] + 3;

>> (3) atomicAdd (out, elem); <<<<<<<<<

 }

18 |

[Public]

Multiple address spaces support

__device__ int some_global = 8;

__shared__ int some_shared;

__device__ int

func (int *arr)
{

int some_private = 8;

 return some_shared + some_private;

}

(gdb) p &some_global
$1 = (int *) 0x7ffff617d1a8 <some_global>
(gdb) p &some_shared
$2 = (int *) local#0x0
(gdb) p &some_private

$3 = (int *) private_lane#0x40

(gdb) x private_lane#0x40

private_lane#0x40: 0x00000008
(gdb) p *(int*)private_lane#0x40

$4 = 8

• Introducing the address_space#offset notation.

• Architecture address-spaces are not a source language concept!
• Use "maintenance print address-spaces " to list the address-spaces supported by the current target.

19 |

[Public]

Useful things to know

• Exceptions are reported for the entire wave.

• Memory exceptions are not precise by default.

• If available, use "set amdgpu precise-memory on" to identify the faulty instruction (impacts

performances).

• On some architectures, attaching to a process shows:
 AMDGPU Wave 1:3:?:1 (?,?,?)/? "attached_process" …

• Use "HSA_ENABLE_DEBUG=1" before starting the process.

• On some architectures, at most one process can be debugged at a time.

20 |

[Public]

DWARF and GPU architectures

• Challenges with current DWARF standard:

o AMD GPUs have multiple address spaces, a "numerical address" is not sufficient to locate an object in memory.

o The stack is not implemented in the default address space.

o Support for divergent control flow of SIMT hardware.

o And more…

• DWARF extensions to overcome those issues implemented in downstream LLVM + ROCgdb:

o https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html

• "DWARF for GPU" workgroup involving multiple vendors working to propose changes to the DWARF

committee:

o https://dwarfstd.org/issues/230524.1.html

o More to come…

https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html
https://dwarfstd.org/issues/230524.1.html

21 |

[Public]

AMDGPU support status in upstream GDB

Feature Status

Driver support in upstream Linux kernel ✓

Wave control (breakpoint, single-step, interrupt & resume) ✓

Disassembly ✓

Precise memory operations ✓

Displaced stepping Pending

Stack unwinding Blocked by DWARF

Printing variables Blocked by DWARF

Address spaces support Blocked by DWARF

Lane debugging Need to agree with other

vendors on the UI.

Need DWARF to write

testcases.

Watchpoints Need DWARF to write

testcases

22 |

[Public]

Additional resources

• ROCgdb:

o https://github.com/ROCm/ROCgdb/

o https://rocm.docs.amd.com/projects/ROCgdb/en/latest/ROCgdb/gdb/doc/gdb/Heterogeneous-Debugging.html

o https://rocm.docs.amd.com/projects/ROCgdb/en/latest/ROCgdb/gdb/doc/gdb/AMD-GPU.html

• Rocm-dbgapi (used by GDB to control AMDGPU devices):

o https://github.com/ROCm/ROCdbgapi/

• "Anatomy of ROCgdb" at GNU Cauldron 2022:

o https://gcc.gnu.org/wiki/cauldron2022#cauldron2022talks.anatomy_of_rocgdb_gdb_for_amd_gpus

o https://www.youtube.com/watch?v=X1iZ_Ta7jOo

• "DWARF extensions for optimized SIMT/SIMD (GPU) debugging" at Linux Plumbers Conference 2021:

o https://lpc.events/event/11/contributions/1012/

o https://www.youtube.com/watch?v=Iv2WO67nklc

https://github.com/ROCm/ROCgdb/
https://rocm.docs.amd.com/projects/ROCgdb/en/latest/ROCgdb/gdb/doc/gdb/Heterogeneous-Debugging.html
https://rocm.docs.amd.com/projects/ROCgdb/en/latest/ROCgdb/gdb/doc/gdb/AMD-GPU.html
https://github.com/ROCm/ROCdbgapi/
https://gcc.gnu.org/wiki/cauldron2022
https://www.youtube.com/watch?v=X1iZ_Ta7jOo
https://lpc.events/event/11/contributions/1012/
https://www.youtube.com/watch?v=Iv2WO67nklc

23 |

[Public]

Disclaimers and Attributions

The information contained herein is for informational purposes only, and is subject to change without notice. Timelines, roadmaps, and/or

product release dates shown in these slides are plans only and subject to change.

While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and

typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes
no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability

of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to
any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

©2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, EPYC, ROCm, CDNA, RDNA and combinations
thereof are trademarks of Advanced

Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

	Default Section
	Slide 1: ROCgdb, GDB and AMDGPU debugging

	AMDGPU arch & programming model
	Slide 2: Agenda
	Slide 3: Abstract AMDGPU architecture
	Slide 4: The HIP "hello world"

	ROCgdb
	Slide 5: Host threads and GPU threads (waves) under single inferior
	Slide 6: GPU Threads (waves)'s Target Id
	Slide 7: Lanes
	Slide 8: Lanes commands
	Slide 9: SIMT Lanes's Target Id
	Slide 10: SIMT and Lane divergence
	Slide 11: Without lane divergence support, step 1
	Slide 12: Without lane divergence support, step 2
	Slide 13: Without lane divergence support, step 3
	Slide 14: Without lane divergence support, step 4
	Slide 15: With lane divergence support, step 1
	Slide 16: With lane divergence support, step 2
	Slide 17: With lane divergence support, step 3
	Slide 18: Multiple address spaces support
	Slide 19: Useful things to know
	Slide 20: DWARF and GPU architectures

	Upstream status
	Slide 21: AMDGPU support status in upstream GDB
	Slide 22: Additional resources
	Slide 23: Disclaimers and Attributions
	Slide 24

