
Multithreading and other developments
in the ffmpeg transcoder

Anton Khirnov

FFlabs

2024-02-04
FOSDEM



The ffmpeg project

the libav∗ libraries
libavcodec: decoders, encoders, bitstream filters, …
libavformat: demuxers, muxers, IO, …
libavfilter: audio/video filters
…
widely used as the backend for multimedia playback and processing
media players, web browsers, transcoders, thumbnailers, …

commandline tools (CLI)
ffmpeg transcoder
ffprobe prober/analyzer
ffplay player



ffmpeg cli

most widely used multimedia transcoder on at least two planets

uses libav∗ libraries to demux, decode, filter, encode, mux, …

almost all format-specific logic is in the libraries

is usually the first user of new library features and APIs

covers more use cases than any other comparable tool

all scales — from individual users to giant corporations



A brief history: 2000

∼700 LoC

raw input only, no decoding

encoding and muxing

raw YUV/V4L video in

raw PCM/OSS audio in

video encoder

audio encoder

mux



A brief history: 2001

∼2000 LoC

demuxing and decoding

multiple input and output files with multiple streams each

input 0

input 1

input 2

vdec 0

vdec 1

adec 0

venc 0

aenc 0

venc 1

aenc 1

output 0

output 1

audio streamcopy



A brief history: up to 2022

2005 — subtitles (∼4.5 kLoC)

2010 — simple video filtering with libavfilter (∼4.5 kLoC)

2012 — complex filtergraphs (∼5 kLoC)

2013 — basic hardware acceleration (∼6 kLoC)

2016 — full hwaccel pipelines become possible (∼8 kLoC)
2022 (project start):

∼11 kLoC
dynamic stream parameter changes
more options than anyone can remember
options interact in highly nontrivial ways



Current general transcoding pipeline

input 0

input 1

input 2

vdec 0

vdec 1

adec 0

filtergraph 0

filtergraph 1

filtergraph 2

venc 0

aenc 0

venc 1

aenc 1

output 0

output 1

subtitle streamcopy



How did we get from 2000 to 2022?

while (1) {

somebody needs a shiny new feature
they implement it, optimizing for

smallest amount of work
smallest diff

usually NOT optimizing for
ease of future development
clean overall design

}

every such step adds a multiplicative factor to overall program complexity

IOW complexity grows exponentially



…in programming simplicity and clarity —in short: what mathematicians
call ”elegance”— are not a dispensable luxury, but a crucial matter that
decides between success and failure

E. W. Dijkstra
EWD648



Project goals

bring code structure in alignment with actual data flow
this is achieved by

making the code more explicitly object-oriented
clearly defined interfaces and responsibilities
separation of public and private state
every major component in its own thread
information flows downstream through the pipeline

the code is easier to understand and maintain

implementing major new features becomes feasible

improved throughput under the right conditions



Progress & status

project started in late 2021

upstreamed continually in ∼50 patchsets of small-moderate size

700+ commits overall, almost every line of code in fftools/ffmpeg*
touched

most of the work — moving things around, making state private

final set merged in December 2023, will appear in upcoming 7.0 release
extras

demuxing bitstream filters
latency probes
opaque passthrough
frame duration handling
timestamps handling improvements
sync queues



Ongoing & future work

separate decoders from demuxers
looping an encoded stream back to a decoder

separate encoders from muxers
every encoder currently coupled to an output stream
sending an encoded stream to multiple muxers

dynamic pipelines

scripting (Lua?)

event loop-based architecture?


