
Vsevolod Stakhov, February 2024

            15-Year Odyssey
From hobby to a large open source project
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Main goals
Still a pet project

• Fast emails processing: we struggled with load on our scanners 🚀

• Minimal support of the required features:

• Regexps

• URLs parsing

• UTF8 and international emails!

• Target system: FreeBSD 
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Pet project
Advantages and disadvantages
• You can experiment a lot: use different technologies, break compatibility, try something new and cool - 

that's positive 👍

• You are concentrated on development, not support

• Nobody expects it to be perfect or even production ready

• However:

• You have limited amount of time: it's die or thrive game

• Bad decisions can hurt for a long time (e.g. XML in config files)

• Even though you still have time to learn from errors and make something cool:

• UCL

• HTTPCrypt

• It's still your pet 🐈
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Benefits

• Rules and intelligence are individual and not revealed in general

• 3-rd party users have found many issues and suggested a lot of 
improvements

• Github has proven to be a great collaboration platform

• I have found some contributors who have helped me with coding and 
documenting of Rspamd (in particular, Andrew Lewis and Alexander 
Moisseev)
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• Scaling:

• Different systems, different use cases, different hardware, different rules etc

• Each OS has it's own requirements

• Public infrastructure is hard to maintain

• Exploiting:

• Community support is another full time job, but unpaid

• ... which is not grateful in general (and very stressful)

• Vendors and large companies can eagerly overuse and destroy your infrastructure
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• You have to maintain backward compatibility or provide a clear upgrade path

• You have to maintain documentation in the actual state

• Each upgrade can cause unexpected side effects (different hardware, 
configuration etc)

• Nobody want to test experimental packages

• You see the same questions again and again... each day. Adding those to 
documentation/FAQ does not help in general

• Adding new features is hard, close to painful

• Migration to some modern technologies is close to impossible
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Some lessons learned
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• Test are important. Boring but important, especially in the growth path to prevent 
regressions

• Documentation is the same game: the proper habit is to write code -> tests and 
documentation simultaneously

• You can never satisfy all OS vendors, so just choose your own path

• Do not blow the size of the core - concentrate on plugins/services

• Study and use the workflow of the collaboration platform (e.g. Github)

• Have a clear and straight migration plan for both external and internal architecture
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• Following semver strategy:

• Keep the stable branch when a head obtains new features

• Don't backport any features and never break compatibility

• Providing Docker images and assist OS maintainers

• Supplying ASAN packages for easier debugging of the issues (helped a lot in the past)

• Slowly migrating core of the Rspamd to the modern C++ (C++20 so far)

• Use external services for specific tasks

• It's still my pet... 🐈



Questions?

Vsevolod Stakhov - vsevolod@rspamd.com

mailto:vsevolod@rspamd.com

