
Vsevolod Stakhov, February 2024

 15-Year Odyssey
From hobby to a large open source project

The start

Main goals
Still a pet project

Main goals
Still a pet project

• Fast emails processing: we struggled with load on our scanners 🚀

Main goals
Still a pet project

• Fast emails processing: we struggled with load on our scanners 🚀

• Minimal support of the required features:

Main goals
Still a pet project

• Fast emails processing: we struggled with load on our scanners 🚀

• Minimal support of the required features:

• Regexps

Main goals
Still a pet project

• Fast emails processing: we struggled with load on our scanners 🚀

• Minimal support of the required features:

• Regexps

• URLs parsing

Main goals
Still a pet project

• Fast emails processing: we struggled with load on our scanners 🚀

• Minimal support of the required features:

• Regexps

• URLs parsing

• UTF8 and international emails!

Main goals
Still a pet project

• Fast emails processing: we struggled with load on our scanners 🚀

• Minimal support of the required features:

• Regexps

• URLs parsing

• UTF8 and international emails!

• Target system: FreeBSD

Pet project
Advantages and disadvantages

Pet project
Advantages and disadvantages
• You can experiment a lot: use different technologies, break compatibility, try something new and cool -

that's positive 👍

Pet project
Advantages and disadvantages
• You can experiment a lot: use different technologies, break compatibility, try something new and cool -

that's positive 👍

• You are concentrated on development, not support

Pet project
Advantages and disadvantages
• You can experiment a lot: use different technologies, break compatibility, try something new and cool -

that's positive 👍

• You are concentrated on development, not support

• Nobody expects it to be perfect or even production ready

Pet project
Advantages and disadvantages
• You can experiment a lot: use different technologies, break compatibility, try something new and cool -

that's positive 👍

• You are concentrated on development, not support

• Nobody expects it to be perfect or even production ready

• However:

Pet project
Advantages and disadvantages
• You can experiment a lot: use different technologies, break compatibility, try something new and cool -

that's positive 👍

• You are concentrated on development, not support

• Nobody expects it to be perfect or even production ready

• However:

• You have limited amount of time: it's die or thrive game

Pet project
Advantages and disadvantages
• You can experiment a lot: use different technologies, break compatibility, try something new and cool -

that's positive 👍

• You are concentrated on development, not support

• Nobody expects it to be perfect or even production ready

• However:

• You have limited amount of time: it's die or thrive game

• Bad decisions can hurt for a long time (e.g. XML in config files)

Pet project
Advantages and disadvantages
• You can experiment a lot: use different technologies, break compatibility, try something new and cool -

that's positive 👍

• You are concentrated on development, not support

• Nobody expects it to be perfect or even production ready

• However:

• You have limited amount of time: it's die or thrive game

• Bad decisions can hurt for a long time (e.g. XML in config files)

• Even though you still have time to learn from errors and make something cool:

Pet project
Advantages and disadvantages
• You can experiment a lot: use different technologies, break compatibility, try something new and cool -

that's positive 👍

• You are concentrated on development, not support

• Nobody expects it to be perfect or even production ready

• However:

• You have limited amount of time: it's die or thrive game

• Bad decisions can hurt for a long time (e.g. XML in config files)

• Even though you still have time to learn from errors and make something cool:

• UCL

Pet project
Advantages and disadvantages
• You can experiment a lot: use different technologies, break compatibility, try something new and cool -

that's positive 👍

• You are concentrated on development, not support

• Nobody expects it to be perfect or even production ready

• However:

• You have limited amount of time: it's die or thrive game

• Bad decisions can hurt for a long time (e.g. XML in config files)

• Even though you still have time to learn from errors and make something cool:

• UCL

• HTTPCrypt

Pet project
Advantages and disadvantages
• You can experiment a lot: use different technologies, break compatibility, try something new and cool -

that's positive 👍

• You are concentrated on development, not support

• Nobody expects it to be perfect or even production ready

• However:

• You have limited amount of time: it's die or thrive game

• Bad decisions can hurt for a long time (e.g. XML in config files)

• Even though you still have time to learn from errors and make something cool:

• UCL

• HTTPCrypt

• It's still your pet 🐈

Open Source?
Benefits

Open Source?
Benefits

• Rules and intelligence are individual and not revealed in general

Open Source?
Benefits

• Rules and intelligence are individual and not revealed in general

• 3-rd party users have found many issues and suggested a lot of
improvements

Open Source?
Benefits

• Rules and intelligence are individual and not revealed in general

• 3-rd party users have found many issues and suggested a lot of
improvements

• Github has proven to be a great collaboration platform

Open Source?
Benefits

• Rules and intelligence are individual and not revealed in general

• 3-rd party users have found many issues and suggested a lot of
improvements

• Github has proven to be a great collaboration platform

• I have found some contributors who have helped me with coding and
documenting of Rspamd (in particular, Andrew Lewis and Alexander
Moisseev)

Open Source?
Unexpected problems

Open Source?
Unexpected problems

• Scaling:

Open Source?
Unexpected problems

• Scaling:

• Different systems, different use cases, different hardware, different rules etc

Open Source?
Unexpected problems

• Scaling:

• Different systems, different use cases, different hardware, different rules etc

• Each OS has it's own requirements

Open Source?
Unexpected problems

• Scaling:

• Different systems, different use cases, different hardware, different rules etc

• Each OS has it's own requirements

• Public infrastructure is hard to maintain

Open Source?
Unexpected problems

• Scaling:

• Different systems, different use cases, different hardware, different rules etc

• Each OS has it's own requirements

• Public infrastructure is hard to maintain

• Exploiting:

Open Source?
Unexpected problems

• Scaling:

• Different systems, different use cases, different hardware, different rules etc

• Each OS has it's own requirements

• Public infrastructure is hard to maintain

• Exploiting:

• Community support is another full time job, but unpaid

Open Source?
Unexpected problems

• Scaling:

• Different systems, different use cases, different hardware, different rules etc

• Each OS has it's own requirements

• Public infrastructure is hard to maintain

• Exploiting:

• Community support is another full time job, but unpaid

• ... which is not grateful in general (and very stressful)

Open Source?
Unexpected problems

• Scaling:

• Different systems, different use cases, different hardware, different rules etc

• Each OS has it's own requirements

• Public infrastructure is hard to maintain

• Exploiting:

• Community support is another full time job, but unpaid

• ... which is not grateful in general (and very stressful)

• Vendors and large companies can eagerly overuse and destroy your infrastructure

Project growth
Problems

Project growth
Problems

• You have to maintain backward compatibility or provide a clear upgrade path

Project growth
Problems

• You have to maintain backward compatibility or provide a clear upgrade path

• You have to maintain documentation in the actual state

Project growth
Problems

• You have to maintain backward compatibility or provide a clear upgrade path

• You have to maintain documentation in the actual state

• Each upgrade can cause unexpected side effects (different hardware,
configuration etc)

Project growth
Problems

• You have to maintain backward compatibility or provide a clear upgrade path

• You have to maintain documentation in the actual state

• Each upgrade can cause unexpected side effects (different hardware,
configuration etc)

• Nobody want to test experimental packages

Project growth
Problems

• You have to maintain backward compatibility or provide a clear upgrade path

• You have to maintain documentation in the actual state

• Each upgrade can cause unexpected side effects (different hardware,
configuration etc)

• Nobody want to test experimental packages

• You see the same questions again and again... each day. Adding those to
documentation/FAQ does not help in general

Project growth
Problems

• You have to maintain backward compatibility or provide a clear upgrade path

• You have to maintain documentation in the actual state

• Each upgrade can cause unexpected side effects (different hardware,
configuration etc)

• Nobody want to test experimental packages

• You see the same questions again and again... each day. Adding those to
documentation/FAQ does not help in general

• Adding new features is hard, close to painful

Project growth
Problems

• You have to maintain backward compatibility or provide a clear upgrade path

• You have to maintain documentation in the actual state

• Each upgrade can cause unexpected side effects (different hardware,
configuration etc)

• Nobody want to test experimental packages

• You see the same questions again and again... each day. Adding those to
documentation/FAQ does not help in general

• Adding new features is hard, close to painful

• Migration to some modern technologies is close to impossible

Some lessons learned
Hard way

Some lessons learned
Hard way

• Test are important. Boring but important, especially in the growth path to prevent
regressions

Some lessons learned
Hard way

• Test are important. Boring but important, especially in the growth path to prevent
regressions

• Documentation is the same game: the proper habit is to write code -> tests and
documentation simultaneously

Some lessons learned
Hard way

• Test are important. Boring but important, especially in the growth path to prevent
regressions

• Documentation is the same game: the proper habit is to write code -> tests and
documentation simultaneously

• You can never satisfy all OS vendors, so just choose your own path

Some lessons learned
Hard way

• Test are important. Boring but important, especially in the growth path to prevent
regressions

• Documentation is the same game: the proper habit is to write code -> tests and
documentation simultaneously

• You can never satisfy all OS vendors, so just choose your own path

• Do not blow the size of the core - concentrate on plugins/services

Some lessons learned
Hard way

• Test are important. Boring but important, especially in the growth path to prevent
regressions

• Documentation is the same game: the proper habit is to write code -> tests and
documentation simultaneously

• You can never satisfy all OS vendors, so just choose your own path

• Do not blow the size of the core - concentrate on plugins/services

• Study and use the workflow of the collaboration platform (e.g. Github)

Some lessons learned
Hard way

• Test are important. Boring but important, especially in the growth path to prevent
regressions

• Documentation is the same game: the proper habit is to write code -> tests and
documentation simultaneously

• You can never satisfy all OS vendors, so just choose your own path

• Do not blow the size of the core - concentrate on plugins/services

• Study and use the workflow of the collaboration platform (e.g. Github)

• Have a clear and straight migration plan for both external and internal architecture

The current state
What we do to keep with the time

The current state
What we do to keep with the time
• CI and tests culture

The current state
What we do to keep with the time
• CI and tests culture

• Using of the Github workflow (at least for releases processing)

The current state
What we do to keep with the time
• CI and tests culture

• Using of the Github workflow (at least for releases processing)

• Following semver strategy:

The current state
What we do to keep with the time
• CI and tests culture

• Using of the Github workflow (at least for releases processing)

• Following semver strategy:

• Keep the stable branch when a head obtains new features

The current state
What we do to keep with the time
• CI and tests culture

• Using of the Github workflow (at least for releases processing)

• Following semver strategy:

• Keep the stable branch when a head obtains new features

• Don't backport any features and never break compatibility

The current state
What we do to keep with the time
• CI and tests culture

• Using of the Github workflow (at least for releases processing)

• Following semver strategy:

• Keep the stable branch when a head obtains new features

• Don't backport any features and never break compatibility

• Providing Docker images and assist OS maintainers

The current state
What we do to keep with the time
• CI and tests culture

• Using of the Github workflow (at least for releases processing)

• Following semver strategy:

• Keep the stable branch when a head obtains new features

• Don't backport any features and never break compatibility

• Providing Docker images and assist OS maintainers

• Supplying ASAN packages for easier debugging of the issues (helped a lot in the past)

The current state
What we do to keep with the time
• CI and tests culture

• Using of the Github workflow (at least for releases processing)

• Following semver strategy:

• Keep the stable branch when a head obtains new features

• Don't backport any features and never break compatibility

• Providing Docker images and assist OS maintainers

• Supplying ASAN packages for easier debugging of the issues (helped a lot in the past)

• Slowly migrating core of the Rspamd to the modern C++ (C++20 so far)

The current state
What we do to keep with the time
• CI and tests culture

• Using of the Github workflow (at least for releases processing)

• Following semver strategy:

• Keep the stable branch when a head obtains new features

• Don't backport any features and never break compatibility

• Providing Docker images and assist OS maintainers

• Supplying ASAN packages for easier debugging of the issues (helped a lot in the past)

• Slowly migrating core of the Rspamd to the modern C++ (C++20 so far)

• Use external services for specific tasks

The current state
What we do to keep with the time
• CI and tests culture

• Using of the Github workflow (at least for releases processing)

• Following semver strategy:

• Keep the stable branch when a head obtains new features

• Don't backport any features and never break compatibility

• Providing Docker images and assist OS maintainers

• Supplying ASAN packages for easier debugging of the issues (helped a lot in the past)

• Slowly migrating core of the Rspamd to the modern C++ (C++20 so far)

• Use external services for specific tasks

• It's still my pet... 🐈

Questions?

Vsevolod Stakhov - vsevolod@rspamd.com

mailto:vsevolod@rspamd.com

