

#### Nigel Brown

© Stacklok, Inc 2024

# How can we trust 3rd party code?

Using Python to understand the trust relationships within the python ecosystem

### Supply chain attacks Recent high profile examples

- SolarWinds Attackers injected a backdoor into a software update of SolarWinds
- Kaseya Attackers compromised this, infecting it with REvil ransomware
- Atlassian Atlassian applications were vulnerable to SSO abuse.
- Apple and Microsoft Security researcher able to hack corporate systems using fake versions of a dependency.
- Mimecast Hackers were able to compromise the security certificate.
- Codecov Infected the uploader, injecting malicious code, eavesdropped on Codecov servers and stole customer data.
- British Airways Magecart supply chain attack disrupted its trading system and leaked sensitive information.

https://www.bluevoyant.com/knowledge-center/supply-chain-attacks-7-examples-and-4-defensive-strategies



### Supply chain Responsibility

- Executive Order 14028
- EU has Cyber Resilience proposal
- Responsibility shifting to the vendor
- Responsibility shifting to you...



### Supply chain attacks are not new!

#### Web of trust As developers we want to trust 3rd party code

- This is the supply chain
- How can we trust it?...



#### Web of trust Delivered as some sort of package



#### Web of trust The package and its source live somewhere

- We have a source repository
- And a package repository



### Web of trust Each package has multiple versions





#### Web of trust Normally delivered as a bag of files



#### Web of trust We want to scan it - see if it is good!





#### Web of trust The code has an owner



#### Web of trust There are other contributors





### Web of trust Companies are involved



#### Reputation can come from companies too!

### Transitive dependencies Or, Turtles all the way down

- We have packages of packages (Ave 1500 deep)
- You could investigate one package manually
- Thousands, you can't
- Key point We need automation



Image: https://www.testifysec.com/blog/turtles-all-the-way-down/

### Web of trust Complex and fragile!



# • The supply chain can be attacked (or break)

There are thousands of ways to draw this!

- Key point this has complexity
- We've only just started

### What to do? Currently

- CVEs
  - We can count them
  - And fix them
- Static Code Analysis
  - Mostly signature based
  - We'll do more of this
    - 3rd party and our own
- We should definitely CVE and SCA
  - But that's a story for another day



### Looking for malice in meta-data The bad apples

- Create a score based on
  - Activity
  - Provenance
  - Normalise it
- Compare
- Looks like we can spot malicious files!



### Looking for malice in meta-data All the apples

- 10x Non malicious files score low
- If we get a low score, 1/10 chance it is malicious
- Looks like we can't spot malicious files!
- Does this matter?
  - Probably not
  - Many favourites score high



#### Things that can hurt us Mænaoteikke this...

![](_page_20_Figure_1.jpeg)

#### Things that can hurt us Other hurtful things...

![](_page_21_Figure_1.jpeg)

#### Things that can hurt us Most of it hidden

We want this bit.

![](_page_22_Figure_2.jpeg)

#### Things that probably won't hurt us Look for the good apples

- Good habits/code hygiene
- Active development
- Developers we trust
- CVE and SCA clear
- Key point
  - Looking for good things is easier because it isn't hidden

![](_page_23_Picture_8.jpeg)

#### Provenance Is it what is says it is?

- SBOMs
- Sigstore
- Historical Provenance

client victim scapegoat developer

. . .

package

![](_page_24_Figure_7.jpeg)

### Is code any good? No short cuts

- Test it
- Measure it SCA
- Code review (requires provenance)
- Become intimate with it...
- Key point -Share the work with a community!
- Automate this

![](_page_25_Figure_8.jpeg)

#### Reputation Where does it come from?

- We know someone
- We know a company
  - They're big
- We guess...
- Hope...
- Do we even care?

• (Yes! EO says so...)

![](_page_26_Figure_9.jpeg)

#### Reputation Where should it come from?

- We should look at
  - participation
  - prior art
  - recommendations
- Generally, proof!

• Again, automate!

![](_page_27_Figure_8.jpeg)

#### Key points tl;dr

- Look for good things easier to spot
- You don't trust code, you trust people
- Trust is complex it can break in many places
- Reputation is important
- Communities can share work
- Automation makes this possible at scale

![](_page_29_Picture_0.jpeg)

- Check out what we are doing
  - <u>https://stacklok.com/</u>
  - Discord
  - <u>https://www.trustypkg.dev/</u>

## Questions?

© Stacklok, Inc 2024

#### Key points tl;dr

- Look for good things easier to spot
- You don't trust code, you trust people
- Trust is complex it can break in many places
- Reputation is important
- Communities can share work
- Automation makes this possible at scale

![](_page_29_Picture_14.jpeg)