
How to Exchange Rot 
for Rust

2024-02-03 Brendan Abolivier, Ikey Doherty, Sean Burke



What we’re working on

Exchange

Support for Microsoft Exchange Web Services mail protocol

•First Rust component for Thunderbird
•First mail protocol to be added in Thunderbird’s lifetime



No one knew how to support a 
new protocol



Rot

© Trace Nietert, CC BY 2.0 

https://www.flickr.com/photos/53553325@N06/6608807925


Rot

A brief history of Thunderbird

•Like Firefox, grew out of Netscape Communicator
•0.1 released in July 2003, 1.0 released in December 2004

•Mozilla divested, transferred ownership to community in 2012
•Maintained by the community until rejoining Mozilla Foundation in 

2017

Decaying architecture, unmaintained code



Rot

What does that mean for the project?

•Long period of ad hoc changes and fixes without overarching 
architectural vision

•Loss of institutional knowledge
•No major architectural maintenance in over 20 years
•Decaying C++, not using modern standards

Decaying architecture, unmaintained code



A significant challenge, but a 
significant opportunity



Rust



Why we chose it

Rust

Benefits to a small team

•All the usual reasons
•Memory safety
•Performance
•Modularity and ecosystem



Why we chose it

Rust

Firefox

•Thunderbird is built on top of Gecko
•Build system and CI tooling already in place
•Integrated into XPCOM, the cross-language interface



Why we chose it

Rust

Looking ahead

•“Permission” to reconsider architecture
•Breaks reliance on old, delicate code paths
•Documentation tooling



The problems we encountered

Rust

Large extant codebase

•APIs and designs which don’t match Rust idioms
•Lots of existing features and capabilities which don’t integrate with 

the ecosystem
•Widespread idiosyncratic async patterns



The problems we encountered

Rust

XPCOM + Rust developer experience

•Thunderbird much more reliant on XPCOM than Firefox
•Part of our aging architecture
•Many interfaces, large surface areas, lots of inheritance

•Bindings built around C++ ABI for performance
•Limitations in Rust tooling around including generated bindings



The problems we encountered

Rust

The build system

•Firefox has a C++ entrypoint
•No single point of entry for Rust code
•All crates into a single workspace to avoid duplication

•Thunderbird built as a subtree of Firefox
•cargo doesn’t like that

•Solution (kinda): script to merge dependencies and vendor



We can use Rust in
Thunderbird! 🥳

What do we do with it now?



● Support Microsoft Exchange

○ EWS (Exchange Web Services)

● EWS => XML (SOAP) over HTTP

● More code infrastructure required:

○ Send HTTP requests through Necko

○ (De)Serialize XML data with scale

What are we trying to achieve?



Sending 
HTTP 
requests

Interacting with XPCOM

● Cross-Platform Component Object Model

● Inter-components interaction

● Platform-neutral interfaces (XPIDL)

● Crossing language boundaries

● Let’s use it to interact with Necko!



Sending 
HTTP 
requests



Sending 
HTTP 
requests

Step 1: Support async/await
● New internal crate (xpcom_async)

● XPCOM async => Rust’s native async 

syntax

● Custom stream listener:

○ Buffers incoming data

○ Wakes a std::task::Waker when 

the request finishes

● Wrapped in XpComFuture:

○ Triggers XPCOM’s async

○ Implements std::future::Future



Sending 
HTTP 
requests

Step 2: Idiomatic HTTP

● Another new internal crate (moz_http)

● Native async interface with xpcom_async

● Rust-idiomatic, reqwest-like HTTP client

● Creates and configures XPCOM objects, 

wrapped into XpComFuture

● Nice error handling



unsafe { demo() }



Handling 
XML content

Initial exploration
● Issues with most existing XML crates:

○ Handling namespaces and attributes

○ Very boilerplatey

● Fine for deserialization, not serialization

○ Need namespaces and attributes in 

requests

○ Loads of data structures and operations in 

EWS => low boilerplate



Handling 
XML content

Serializing XML
● External crate (xml_struct)

● Code generation using Rust’s procedural 

macros

● Dynamic trait implementations at compile 

time (derive)

● Built on top of quick-xml

● Low-boilerplate approach



unsafe { demo() }



● Implement the damn thing!

○ Implement protocol support for EWS in Rust

○ Hook this support to the Thunderbird UI

● Bonus points: generalize the xml_struct crate if there is 

enough interest

What’s next?



Thank you!


