
2023/02/03 Chimera Linux @ FOSDEM 2024 1

Building a Linux distro with LLVM



2023/02/03 Chimera Linux @ FOSDEM 2024 2

Introduction
● General-purpose Linux distribution
● Particular focus on desktop/workstations
● Robustness, security hardening, good defaults
● Lightweight and transparent
● Pragmatic and versatile



2023/02/03 Chimera Linux @ FOSDEM 2024 3

Overview
● LLVM as system toolchain
● FreeBSD as core userland
● Musl as libc
● Apk-tools as package manager
● Binary packaging, clean source build infra



2023/02/03 Chimera Linux @ FOSDEM 2024 4

Overview
● Bootstrappable
● Can cross-compile (official repos are native)
● Supports many architectures:

– Aarch64, ppc64le, ppc64, riscv64, x86_64
● System-wide LTO, UBSan, CFI, ...



2023/02/03 Chimera Linux @ FOSDEM 2024 5

Getting started
● Early 2021
● Cbuild: source package build system
● Template: describes one individual piece of software
● Host system: Void Linux, architecture: ppc64le
● Sandbox: runs its own build environment



2023/02/03 Chimera Linux @ FOSDEM 2024 6

Bootstrap process
● 4 stages
● Stage 0: use outside toolchain
● Stage 1: use packages from stage 0 (containerized)
● Stage 2: enable LTO and remaining build options
● Stage 3: clean rebuild (with stage 2 packages)



2023/02/03 Chimera Linux @ FOSDEM 2024 7

Build environment
● Bare minimum packages needed to build self
● Libc, compiler, core userland, package manager
● Build dependencies for software being packaged
● Overall a small Chimera container
● Running unprivileged (Linux user namespaces)



2023/02/03 Chimera Linux @ FOSDEM 2024 8

Why use LLVM?
● More modern compiler design
● Security: state of the art sanitizers (e.g. CFI)
● Easier to build and bootstrap, simpler cross-build
● Thin LTO, better performance
● Often less buggy



2023/02/03 Chimera Linux @ FOSDEM 2024 9

Why not use LLVM?
● Very occasionally worse compatibility
● Fewer architectures supported
● Some of the supported ones are less maintained
● Takes longer to build (bigger, idiomatic C++)
● Very rarely worse performance



2023/02/03 Chimera Linux @ FOSDEM 2024 10

Toolchain structure: typical
● A C library (usually glibc or musl)
● GNU Binutils: assembler, linker, ELF utilities
● GCC: C/C++ compiler, core runtime (crt+libgcc), C++ 

standard library, possibly other languages
● One build of binutils+gcc per target



2023/02/03 Chimera Linux @ FOSDEM 2024 11

Userland ABI: typical
● Part statically linked – builtins (libgcc.a), early crt
● Unwinder + dynamic builtins: libgcc_s.so.1
● C++ standard library: libstdc++.so.6
● Base C++ ABI: libstdc++.so.6 or libsupc++
● CRT is part libc, part GCC



2023/02/03 Chimera Linux @ FOSDEM 2024 12

Toolchain structure: LLVM
● LLVM: compiler, linker, assembler, binutils, all-in-one
● The only separate component is libc (glibc/musl)
● One compiler for all native and cross targets
● Only the runtime and target libraries are per-target
● Simplified bringup



2023/02/03 Chimera Linux @ FOSDEM 2024 13

Userland ABI: native LLVM
● Not used in most distros (LLVM uses GCC’s env)
● Builtins are static (libclang_rt.builtins.a) - compiler_rt
● Unwinder: libunwind.so.1
● C++ library and base ABI: libc++.so.1, libc++abi.so.1
● Standalone (no GCC dependency)



2023/02/03 Chimera Linux @ FOSDEM 2024 14

ABI compatibility
● Libunwind ABI matches most of libgcc_s
● Builtins can be compiled into a makeshift libgcc_s
● Libc++ stdlib ABI is different (won’t run GCC programs)
● However, libc++ and libstdc++ can live in one process

– In theory (need libstdc++ using libc++’s ABI library)



2023/02/03 Chimera Linux @ FOSDEM 2024 15

Choosing a libc
● Glibc: could not build with Clang until recently

– Still incompatible with native LLVM: dlopens libgcc_s.so.1
● Musl: builds and just works as-is
● There are others but generally domain-specific (e.g. 

embedded) or somehow worse than the other two



2023/02/03 Chimera Linux @ FOSDEM 2024 16

The allocator
● LLVM comes with yet another thing: Scudo
● The memory allocator used in Android, hardened
● Modular design: can mix and match components, 

configure them, or even provide custom ones
● Very unassuming (no mandatory ELF TLS, etc.)



2023/02/03 Chimera Linux @ FOSDEM 2024 17

The allocator
● Musl allocator: bad performance in threaded programs
● Replaced with Scudo: e.g. 3x faster lld LTO link perf
● No ELF TLS within libc: custom TSD registry

– Plugs directly into the pthread structure, manual mmap
● Unfortunately very high virt mem usage :(



2023/02/03 Chimera Linux @ FOSDEM 2024 18

Cross-compilation
● Cbuild can cross-compile
● Cross targets need cross runtimes
● Includes compiler-rt, musl, libunwind, libc++(abi)
● Slightly tricky bootstrap
● Installed into sysroot



2023/02/03 Chimera Linux @ FOSDEM 2024 19

Bootstrapping cross runtimes
● Build compiler-rt builtins+crtbegin/end first

– Force static libs (avoid conftests) and disable sanitizers
– Requires libc headers, so give it some (musl in temp place)

● Build and install libc (needs only the above)
● Build and install libunwind and libc++(abi)



2023/02/03 Chimera Linux @ FOSDEM 2024 20

Bootstrapping cross runtimes
● Libunwind and libc++ can (should) be done all at once

– Still needs explicit -nostdlib in CXXFLAGS (don’t have one)
● Now compile the rest of compiler-rt

– This is mainly sanitizers
● Once in sysroot, this is the full cross runtime



2023/02/03 Chimera Linux @ FOSDEM 2024 21

Practical experiences
● Makes system-wide LTO possible

– Far lower resource usage and near universal compatibility
● Security hardening

– We deploy a subset of UBSan (signed overflows are 
crashes...)

– Partial CFI; breaks too many projects to deploy universally



2023/02/03 Chimera Linux @ FOSDEM 2024 22

Practical experiences
● Toolchain patching is in line with GCC

– Still heavier than I would like… (~30 patches)
● On Linux, often geared towards GCC-style environment

– Upstream should consider dogfooding more
● The build system can be an impenetrable mess



2023/02/03 Chimera Linux @ FOSDEM 2024 23

Practical experiences
● Major release updates can be daunting

– Every release breaks some third party software
– Usually for a good reason (legacy C misfeatures…)
– Still causes an unfortunate amount of fallout

● Community is good and helpful



2023/02/03 Chimera Linux @ FOSDEM 2024 24

Conclusion
● Generally a great toolchain
● Some pain points, but generally practical
● Can build just about any Linux software

– Given GCC’s history, an amazing feat
● Should not be reduced to “that GCC drop-in”



2023/02/03 Chimera Linux @ FOSDEM 2024 25

Thanks for listening!
● https://chimera-linux.org
● https://github.com/chimera-linux
● https://floss.social/@chimera_linux
● #chimera-linux @ OFTC (irc.oftc.net)
● #chimera-linux:matrix.org

https://chimera-linux.org/
https://github.com/chimera-linux
https://floss.social/@chimera_linux

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

