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Building a Linux distro with LLVM
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Introduction
● General-purpose Linux distribution
● Particular focus on desktop/workstations
● Robustness, security hardening, good defaults
● Lightweight and transparent
● Pragmatic and versatile
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Overview
● LLVM as system toolchain
● FreeBSD as core userland
● Musl as libc
● Apk-tools as package manager
● Binary packaging, clean source build infra
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Overview
● Bootstrappable
● Can cross-compile (official repos are native)
● Supports many architectures:

– Aarch64, ppc64le, ppc64, riscv64, x86_64
● System-wide LTO, UBSan, CFI, ...
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Getting started
● Early 2021
● Cbuild: source package build system
● Template: describes one individual piece of software
● Host system: Void Linux, architecture: ppc64le
● Sandbox: runs its own build environment
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Bootstrap process
● 4 stages
● Stage 0: use outside toolchain
● Stage 1: use packages from stage 0 (containerized)
● Stage 2: enable LTO and remaining build options
● Stage 3: clean rebuild (with stage 2 packages)
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Build environment
● Bare minimum packages needed to build self
● Libc, compiler, core userland, package manager
● Build dependencies for software being packaged
● Overall a small Chimera container
● Running unprivileged (Linux user namespaces)
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Why use LLVM?
● More modern compiler design
● Security: state of the art sanitizers (e.g. CFI)
● Easier to build and bootstrap, simpler cross-build
● Thin LTO, better performance
● Often less buggy
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Why not use LLVM?
● Very occasionally worse compatibility
● Fewer architectures supported
● Some of the supported ones are less maintained
● Takes longer to build (bigger, idiomatic C++)
● Very rarely worse performance
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Toolchain structure: typical
● A C library (usually glibc or musl)
● GNU Binutils: assembler, linker, ELF utilities
● GCC: C/C++ compiler, core runtime (crt+libgcc), C++ 

standard library, possibly other languages
● One build of binutils+gcc per target
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Userland ABI: typical
● Part statically linked – builtins (libgcc.a), early crt
● Unwinder + dynamic builtins: libgcc_s.so.1
● C++ standard library: libstdc++.so.6
● Base C++ ABI: libstdc++.so.6 or libsupc++
● CRT is part libc, part GCC
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Toolchain structure: LLVM
● LLVM: compiler, linker, assembler, binutils, all-in-one
● The only separate component is libc (glibc/musl)
● One compiler for all native and cross targets
● Only the runtime and target libraries are per-target
● Simplified bringup
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Userland ABI: native LLVM
● Not used in most distros (LLVM uses GCC’s env)
● Builtins are static (libclang_rt.builtins.a) - compiler_rt
● Unwinder: libunwind.so.1
● C++ library and base ABI: libc++.so.1, libc++abi.so.1
● Standalone (no GCC dependency)



2023/02/03 Chimera Linux @ FOSDEM 2024 14

ABI compatibility
● Libunwind ABI matches most of libgcc_s
● Builtins can be compiled into a makeshift libgcc_s
● Libc++ stdlib ABI is different (won’t run GCC programs)
● However, libc++ and libstdc++ can live in one process

– In theory (need libstdc++ using libc++’s ABI library)
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Choosing a libc
● Glibc: could not build with Clang until recently

– Still incompatible with native LLVM: dlopens libgcc_s.so.1
● Musl: builds and just works as-is
● There are others but generally domain-specific (e.g. 

embedded) or somehow worse than the other two
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The allocator
● LLVM comes with yet another thing: Scudo
● The memory allocator used in Android, hardened
● Modular design: can mix and match components, 

configure them, or even provide custom ones
● Very unassuming (no mandatory ELF TLS, etc.)
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The allocator
● Musl allocator: bad performance in threaded programs
● Replaced with Scudo: e.g. 3x faster lld LTO link perf
● No ELF TLS within libc: custom TSD registry

– Plugs directly into the pthread structure, manual mmap
● Unfortunately very high virt mem usage :(
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Cross-compilation
● Cbuild can cross-compile
● Cross targets need cross runtimes
● Includes compiler-rt, musl, libunwind, libc++(abi)
● Slightly tricky bootstrap
● Installed into sysroot
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Bootstrapping cross runtimes
● Build compiler-rt builtins+crtbegin/end first

– Force static libs (avoid conftests) and disable sanitizers
– Requires libc headers, so give it some (musl in temp place)

● Build and install libc (needs only the above)
● Build and install libunwind and libc++(abi)
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Bootstrapping cross runtimes
● Libunwind and libc++ can (should) be done all at once

– Still needs explicit -nostdlib in CXXFLAGS (don’t have one)
● Now compile the rest of compiler-rt

– This is mainly sanitizers
● Once in sysroot, this is the full cross runtime
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Practical experiences
● Makes system-wide LTO possible

– Far lower resource usage and near universal compatibility
● Security hardening

– We deploy a subset of UBSan (signed overflows are 
crashes...)

– Partial CFI; breaks too many projects to deploy universally
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Practical experiences
● Toolchain patching is in line with GCC

– Still heavier than I would like… (~30 patches)
● On Linux, often geared towards GCC-style environment

– Upstream should consider dogfooding more
● The build system can be an impenetrable mess
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Practical experiences
● Major release updates can be daunting

– Every release breaks some third party software
– Usually for a good reason (legacy C misfeatures…)
– Still causes an unfortunate amount of fallout

● Community is good and helpful
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Conclusion
● Generally a great toolchain
● Some pain points, but generally practical
● Can build just about any Linux software

– Given GCC’s history, an amazing feat
● Should not be reduced to “that GCC drop-in”
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Thanks for listening!
● https://chimera-linux.org
● https://github.com/chimera-linux
● https://floss.social/@chimera_linux
● #chimera-linux @ OFTC (irc.oftc.net)
● #chimera-linux:matrix.org

https://chimera-linux.org/
https://github.com/chimera-linux
https://floss.social/@chimera_linux
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