CATS: The Climate Aware Task Scheduler

Colin Sauze and Abhishek Dasgupta

And the rest of the CATS team: Sadie Bartholomew, Andrew Walker, Loïc Lannelongue, Thibault Lestang, Tony Greenberg, Lincoln Colling, Adam Ward and Carlos Martinez

What?

- Time shifting computing to reduce carbon emissions from electricity.
- Focus on small to mid sized HPC and HTC systems.
 - Tend to be less loaded, near 100% load prevents time shifting.

Why?

https://climate.copernicus.eu/2023-track-become-warmest-year-after-record-october

https://showyourstripes.info/c

Our Motivation

Image credits: from IT Crowd (Channel 4), inked from https://i.imgflip.com/208mpa.jpg

Many of us need to do computationally or data intensive science ... but can we do this and not set the world on fire?

How?

- Shift compute to times when electricity has lower carbon intensity
- Carbon Intensity of electricity in the UK is very variable over time
 - Windy and/or sunny = lower carbon
 - Between 0 and 400 g/kWh
 - EU average 251 g/kWh in 2022 (1)
- Regional variations
 - Scotland usually lowest
 - Lots of wind power, some hydro
 - Southern England or London highest
 - Still highly dependent on gas, some wind and solar, not much wind power
- Regions are interconnected
 - But capacity is limited
 - o Interconnections to Denmark, France, Ireland, Belgium, the Netherlands and Norway

Carbon Intensity API

- Carbonintensity.org.uk provides regionalised forecasts
 - 30 minute time window
 - 48 hours into the future
 - JSON and XML APIs

An example, October 6th 2023

A very windy and somewhat sunny day

Supplying Regions | beta

Generation Mix

wind

73%

October 9th 2023

58.75 times more carbon Wales!

hydro

17.2%

8.8%

nuclear

imports

1.7%

59.3%

more in South England

South England beta

How much could we save by timeshifting?

- Fictional HPC:
 - 64 core AMD EPYC 7773X (Milan) CPUs
 - 10 nodes, 2 CPUs per node, 20 CPUs total, 1280 cores
 - Fully loaded CPU = 255W, Idle CPU = 37.5W (from https://www.phoronix.com/review/amd-epyc-7773x-linux/9)
 - Idle saving = 217.5W per CPU
 - Cluster idle vs peak = 4.35kW
- Time shifting reduces grid intensity from 200g/kWh to 50g/kWh = 150g/kWh reduction
- 12 hour job using all cores
- 12h * 4.35kW = 52.2kWh
- 52.2kWh * 0.15kg = 7.83kg
- Comparable to driving an average car (150g/km) 50km (7.5kg)

Why you should timeshift your compute!

- Time shifting your job = not driving 50 km to work
- How many of us don't drive to work for environmental reasons?
- How many employers discourage driving to work for this reason?
- Let's time shift our compute too!

Savings vary across the world

(a) Flexible Start optimization for Dense 201.

Measuring the Carbon Intensity of AI in Cloud Instances

Authors: Jesse Dodge Taylor Prewitt Memi Tachet des Combes Frika Odmark. Roy Schwartz

Emma Strubell Alexandra Sasha Luccioni Noah A. Smith Noah Claims

FACCT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency June 2022 Pages 1877-

1894 • https://doi.org/10.1145/3531146.3533234

But won't the grid be net zero soon anyway?

- Maybe?
 - UK Grid 495 gCO2/kWh in 2008, 155 gCO2/kWh in 2023
 - Planned to be net-zero by 2035
- If we can do something now, then why wait?
- Getting zero emission grid on cold, dark, calm winter days will be difficult.
 - Expensive energy storage, synthetic fuels or carbon capture needed
 - Reducing peak demand will help
- Increasing number of days with overproduction
- Time shifting useful if you generate your own power too (e.g. rooftop solar)
- Variable rate electricity tariffs, save money as well as carbon.

From the National Grid Future Energy Scenarios in 5 https://www.nationalgrideso.com/document/283056/download

Introducing the climate-aware task scheduler

1. Users submit a runtime and postcode

2. CATS figures out the best time to start the job

TADAA, you've reduced your carbon footprint by **70%**

CATS proof of concept

- Built in a day at the Software Sustainability Institute's Collaborations Workshop Hackday 2023
 - Won 1st prize!
- Python script targeting the classical UNIX 'at' scheduler
- Intended as proof of concept for users who do 'small scale' computing (e.g. a few hours on a workstation overnight)

Limitations of CATS

- Won't be able to do much on systems at/near 100% load
- Relies on user specifying the job length correctly
- Another user might run during the time we're avoiding
- Only works in the UK right now
 - Other countries don't have freely available regional carbon intensity data or carbon intensity forecasts
 - Links to APIs to enable this are welcome (https://github.com/GreenScheduler/cats/issues/22)
- Not the only thing you can/should do to reduce the climate impact of your HPC
 - Lots of emissions from scope 3 (manufacturing)
 - Cooling
 - Storage
 - Networks

Using CATS

```
python -m cats -d <job_duration> --loc <postcode>
```

- Postcode is a proxy for location, can also be specified in a config.yml file.
- Will return the time to start a job in an At friendly format (yyyymmddhhMM) to stdout
 - Additional info returned in JSON format to stderr
- Pipe a command to At to run it and substitute the -t option for the output from CATS, for example to run ls:

```
ls | at -t `python -m cats -d 5 --loc OX1`
```

Estimating Carbon Used by a Job

We can get estimates on how much a job used

Providing we supply:

- PUE (Power Use Efficiency, the amount of power that went on compute vs cooling)
- CPU/GPU type and Thermal Design Power
- Job run time

```
location: "EH8"
api: "carbonintensity.org.uk"
PUE: 1.20 # > 1
partitions:
   CPU_partition:
    type: CPU # CPU or GPU
   model: "Xeon Gold 6142"
   TDP: 9.4 # Thermal Design Power in W/core
GPU_partition:
   type: GPU
   model: "NVIDIA A100-SXM-80GB GPUs"
   TDP: 300
   CPU_model: "AMD EPYC 7763"
   TDP_CPU: 4.4
```

Demo Video

https://github.com/GreenScheduler/cats/blob/main/cats.gif?raw=true

Next Steps

- Version 1.0 release this month.
 - Cleaning up the command line options
- Slurm Integration
 - Simplest method: use sbatch to offset start time
 - Green queues
 - Integrating carbon accounting as a Slurm plugin (will need rewrite in C)
 - Funding from the Software Sustainability Institute for a few months of developer time
- We plan to test CATS on Slurm on some real HPCs this summer

Any questions?

CATS Github: https://github.com/GreenScheduler/cats

Get in contact:

Colin Sauze - colin.sauze@noc.ac.uk

Abhishek Dasgupta - abhishek.dasgupta@dtc.ox.ac.uk