Fighting Cancer with Rust

Enola Knezevic

1 Federated Information Systems, German Cancer Research Center
2 Complex Data Processing in Medical Informatics, University Medical Center Mannheim

enola.knezevic@dkfz-heidelberg.de
Biobanks and data stores

- biospecimens, such as serum, plasma, tissue samples
- data about those samples and pseudonymized data about their patient donors
- researchers need to find samples and data by search criteria e.g.
 - sample type
 - storage temperature
 - molecular markers (nucleotide changes, amino-acid changes)
 - patient’s diagnoses
 - therapies patients underwent
Federated search results (BBMRI-ERIC)

- central search
- only receives aggregated data – individual data never leaves the site
- obfuscated and rounded counts
Simplified architecture

Web Traffic
Encrypted
CQL/Beacon/...
Operations

Researcher
Lens (Web Browser)
Webserver
Lens Backend
Beam

Webserver
Beam
Focus
Blaze

Site A
DKFZ Operations
Configuration
Deployment
Monitoring

Site B
Site C

Laplace

Encrypted

DKFZ
Operations

Cancer Research Center
in the Helmholtz Association

UNIVERSITÄTSKLINIKUM
MANNHEIM
Projects

- GBN – German Biobank Node
- BBMRI-ERIC - Biobanking and Biomolecular Resources Research Infrastructure – European Research Infrastructure Consortium
- DKTK – German Cancer Consortium
- CCP – Clinical Communication Platform
- Cancer Core Europe
- ITCC P4 - Paediatric Preclinical Proof Of Concept Platform
European Federation for Cancer Images
Samply.Beam

• Distributed task broker designed for efficient communication across strict network environments present in medical informatics:
 • End-to-end encryption
 • Certificate management and validation
 • Only outbound connections
Samply.Focus

- Federated query dispatcher working with Samply.Beam
- CQL query generation to prevent CQL injections
- AST translation: EUCAIM: Chaimeleon, ProCAncer-I
- Running the query against the data stores, other applications
- Query result obfuscation using Samply.Laplace library
Differential privacy algorithms

• Promises:
 • Preserve privacy while keeping the data useful for research: publish aggregate data, withhold individual data
 • Resist differencing attacks trying to identify whether an individual’s data is in a certain database or not (e.g. by selecting a certain diagnosis, date of diagnosis, age, and gender of the patient)
 • **Offer similar level of privacy as having individual’s data removed from the database**
Why k-anonymity is not enough

• Medical data often anonymised and pseudonymised
• k-anonymity - all combinations of attributes are satisfied by at least k entries in the dataset
• “Cut-off" value of k not sufficient to ensure k-anonymity, especially if multiple sensitive criteria are involved
• Sensitive characteristic evenly distributed within a class - can be inferred
• Associating anonymised information with additional external information
Laplace distribution

The Laplace distribution is a continuous probability distribution that is often used in statistics. It is characterized by two parameters: \(\mu \) (the location parameter) and \(b \) (the scale parameter). The probability density function (PDF) of the Laplace distribution is given by:

\[
f(x) = \frac{1}{2b} e^{-\frac{|x-\mu|}{b}}
\]

where \(x \) is a random variable, \(\mu \) is the location parameter, and \(b \) is the scale parameter.

In the GeoGebra calculator suite, you can adjust the parameters \(\mu \) and \(b \) to visualize the Laplace distribution. The graph shows the behavior of the distribution for different values of \(\mu \) and \(b \).
Privacy – usability trade-off
Privacy – usability trade-off

$$b = \frac{\delta}{\varepsilon}$$

- δ – sensitivity
- ε – privacy budget
Samply.Laplace

- differential privacy-inspired query result obfuscation
- Rust crate (& a Java library in case anyone prefers that)
- highly configurable:
 - sensitivity, privacy budget
 - values under 10: change all to 10, change all to 0, or obfuscate in the usual way
 - turn off obfuscation of zeroes
 - rounding step
 - obfuscation value cache – consistent results
Open-source

• Apache-2.0 license
• Feel free to use and contribute to our software