

Can open source development drive energy transition? PyPSA-Earth experience

Ekaterina Fedotova Energy Systems Modeling Lead, Open Energy Transition Maintainer of PyPSA-Earth project

Energy: Reimagining this Ecosystem through Open Source - Ekaterina Fedotova

Shaping the future

Energy: Reimagining this Ecosystem through Open Source - Ekaterina Fedotova

Source: IPCC 6th Assessment Report

Shaping the future

Planning under uncertainties

- 1. Uncertainty of a socio-economic scenario
- 2. Technologies development
- 3. Effects of climate variability and climate change
- 4. Regional specifics

Energy: Reimagining this Ecosystem through Open Source - Ekaterina Fedotova

Tollefson (2023) How hot will Earth get by 2100

Planning under uncertainties

- unsuccessful early PV programme in Bhutan (1980s);
- plans to build large-scale hydropower plants in Chile: HidroAysén (2008 – 2012);
- failure of solar water heating programme in South Africa (2009 – 2014);
- repeal of carbon pricing in Australia (2014).

Energy: Reimagining this Ecosystem through Open Source - Ekaterina Fedotova

Source: https://conservacionpatagonica.wordpress.com/

Replace painful experience of real-world failures with modeling experiments

Open energy modeling is gaining in interest

There are about 90 open source energy models at the moment

openmod	Search
Navigation	Page Discussion
Main page	~ • • • •
Models	Open Models

▲ੑੑ

Spine Toolbox

OSeMOSYS Open Source Energy Modelling Systen

...but not all countries have a net-zero plan

PyPSA-meets-Earth Independent research initiative

Open code

- Build upon existed approaches
- Generalised for global applicability

Open data

- Relays on open science outputs
- Crowdsourced validation

Open energy modeling community

- Focus on regional perspective
- Cross-national synergies
- Support of policy formulation
- Investment analysis
- Decarbonisation pathways

FOSDEM 2024

PyPSA-meets-Earth Filling the gap

PyPSA-Earth: Open Code

Energy: Reimagining this Ecosystem through Open Source - Ekaterina Fedotova

- Environment and climate
- Electricity demand
- Power infrastructure
- Technology costs

Retrieval vs load on demand: the difference in crucial to start with modeling

Data licensing matters

- Environment and climate
 - Renewable potential
 - Land usage
 - Administrative boundaries
 - Coast lines

atlite package: translate geophysics into energy

Solar Photovoltaic Potential Density [MW/km2]

Electricity demand

- follows weather
- depends on economics
- governed by development scenarios

Availability of measured hourly demand profile is crucial

Power infrastructure

- transmission grid

- power plants

Technology costs

Energy: Reimagining this Ecosystem through Open Source - Ekaterina Fedotova

earth-osm package: load power features from OpenStreetMap

powerplantmatching package: merge and harmonise open datasets on generation capacity

PyPSA-Earth: Build model

- Build a power grid model:
 - create a grid topology
 - simplify and cluster
- Attach demand and generation
- Add extra-features (storage and transmission expansion, an emission constraint, load shedding)

PyPSA-Earth: Optimise model

- Translate the energy model into a linear program
- Run optimisation
- Split on blocks and apply decomposition

PyPSA-Earth: Applications

Energy modelling should be accessible for any part of the world

pypsa-earth] Fix earth (PR #654)

FOSDEM 2024

PyPSA-Earth: Applications

Energy modelling should be accessible for any part of the world

Done!

In which country would you be interested?

Feel free to explore: @pypsa-meets-earth/pypsa-earth

https://zenodo.org/records/10080766

PyPSA-Earth: Nigeria

- **Problem statement**: brownfield capacity optimisation
- **Goal**: investigate a possible implementation of a net-zero scenario
- **Results:** optimised renewable electricity future for Nigeria could be cheaper than today
- **Impact**: proof-of-concept in academic field
- Further work: robust optimisation

Parzen et al. 2023 PyPSA-Earth. A new global open energy system optimization model demonstrated in Africa

PyPSA-Earth: Kazakhstan

- **Problem statement**: shape the \bullet decarbonisation of the national power sector in a way consistent with development of the national economics
- **Goal:** play with decarbonisation \bullet scenarios considering different share of renewable power

https://github.com/pypsa-meets-earth/pypsa-kz-data

Energy: Reimagining this Ecosystem through Open Source - Ekaterina Fedotova

0.16 - 0.14 ____ electricity demand [% 0.12 0.10 0.08 0.06

0.04

0.02

PyPSA-Earth: Kazakhstan

- **Results:** Renewable energy has been proven to be a plausible option
- **Impact**: Modeling evidence \bullet has been used in the policy discussions
- Further work: look into the \bullet climate change effects and cross-border interconnections

https://github.com/pypsa-meets-earth/pypsa-kz-data

PyPSA-Earth: Saudi Arabia

- **Problem statement**: Investigate a possible path to net-zero at 2060
- **Goal:** Look into alternatives to the current 99% reliance on fossil-fuel production
- **Results:** Renewable energy has been proven to be a plausible option
- **Impact**: The first open source model for the energy system of Saudi Arabia
- Further work: Address gaps in the data, investigate an effect of storage costs decrease, consider more generation technologies

FOSDEM 2024

A. Algarei 2022 Planning Saudi Arabia's Energy Transition for 2060 with PyPSA

PyPSA-Earth: Bolivia

- Problem statement: Improve accuracy and transparency of power planing in South America
- **Goal**: Build an open energy system models tool •
- **Results:** Successful validation of an open energy systems model for Bolivia
- **Impact**: Proof-of-concept of the open source lacksquareapproach for the area with limited data availability
- **Further work**: Improve representation of the power grid to adjust a modeling approach for the regional specifics

C.A.A.F. Vazquez et al. 2023 Using PyPSA-Earth to address energy systems modelling gaps in developing countries. A case study for Bolivia

PyPSA-Earth: Malaysia

- Problem statement: Look into options to decarbonise the national industry sector
- Goal: Assess cost-effective options of netzero transition for the national economics
- **Preliminary results**: the energy transition is quite a challenge due to the limited renewable potential
- Further work: Consider cross-national interconnections

PyPSA-Earth: Community

Diverse but speaking the same language

Channels of communication:

- Github
- Discord
- **Developers** meetings
- LinkedIn

PyPSA-Earth: Community

The location-related diversity gaps in FOSS contributions are real*

Reasons:

- cross-cultural difference in communication patterns
- a narrow regional perspective of the state-of-the-art research
- lack of capacity/resources
- limited access to infrastructure

Energy: Reimagining this Ecosystem through Open Source - Ekaterina Fedotova

* Tobias Augspurger (FOSDEM 2023) Open **Source in Environmental Sustainability**

Lessons learned

- Open energy modeling works and makes an impact
- Geographic gaps exists but can be successfully addressed
- Accessibility is the main concern to increase adoption

Energy: Reimagining this Ecosystem through Open Source - Ekaterina Fedotova

... the gaps may be bridged!

To be continued

Address modeling challenges:

- Global-scale validation
- Bringing climate-energy gap
- Implement advanced optimisation methods

Increase usability:

- Improve docs & provide capacity building
- Enhance starter datakits
- Dependencies management

Energy: Reimagining this Ecosystem through Open Source - Ekaterina Fedotova

CDD|2070 - CDD|2020

You suggestions?

Energy transition knows no borders