

AEROGRAMME
A multi-region IMAP server
FOSDEM 2024
Brussels, Belgium

By Internet Mail

Some context
About me

About the Deuxfleurs collective

About Aerogramme

Quentin Dufour, Freelance developer
PhD in distributed systems
quentin@dufour.io

Non-profit collective member of CHATONS.org
Building a small appropriated low-tech Internet

Started in 2022, a Deuxfleurs project
Supported by NLnet

The problem we want to solve

Why people use emails?

Making other people available
when it would be otherwise impossible.

What does it mean on the tech side?

Systems must be available
otherwise they are useless

Today’s talk is about 3 ideas

(1) Cloud & hosting providers can fail,
 they should not be solely relied upon.

(2) Relaxing consistency has virtues,
 but correctness is mandatory.

(3) New designs in the email ecosystem
 are possible in the real world

Don’t trust your provider

Cloud/hosting providers can fail hard

Google europe-west9, april 2023 incident
https://cloud.google.com/network-connectivity/docs/interconnect/concepts/choosing-colocation-facilities

❌

 Interxion datacenter, La Courneuve

Global Switch datacenter, Clichy

🔥❌

❌

 DATA4, Saclay

 TeleHouse 2, Paris

Moving to reliability-first designs

Cloud Native Patterns by Cornelia DavisCloud Native Patterns by Cornelia Davis

Gmail and Google Search reliability is built into
their source code, not Google’s DC.
FLOSS should start writing reliable software too!

Reliable software are hard to write

Measurements done on Scaleway from PAR1 to PAR1(1), PAR2(2), WAR1(3).
1k ICMP packets, 100ms interval, on 2024-01-29, using DEV1-S Ubuntu instances.

Especially when you can’t neglect latency & crashes anymore.
It’s called distributed computing/systems.

15× Delays are 15× higher in a multi-region deployment
compared to a single region one.

Relaxing consistency
while staying correct

Apache James summarizes the problem

Scaling emails infrastructure is a notoriously hard
problem as we rely on monotonic UID generation.

Running the Distributed Server IMAP server in a
multi datacenter setup without strong consistency
will likely result in data loss as the same UIDs could
be allocated several times. With strong consistency,
it will result in very slow operations

Running James with a multi data-center
Cassandra setup is discouraged.

https://james.staged.apache.org/james-project/3.6.0/servers/distributed/
architecture/consistency-model.html

Note : Quote reworded for the sake of fitting the slide.

Review of existing high-availability approaches
Leader/follower designs
Cyrus IMAP, Dovecot
→ No high availability

Consensus/Total Order based designs
Stalwart IMAP/JMAP
Apache James
Wildduck
→ No multi-region, latency sensitive

CRDT designs
Pluto
→ Imcomplete implementation, missing UID

Our solution: living with conflicts

How UID conflicts happen?

P1

P2

UID=1 UID=2 UID=3

UID=1 UID=3UID=2 UID=4

UID=4 CONFLICT!

CONFLICT!

Our implementation

1 2 3Event log is not
totaly ordered but
causaly ordered

Proven algorithm to solve
conflicts and compute
a new UIDVALIDITY

Clever sync of
the event log to reduce
the conflict window

Conflicts are OK in IMAP as long as 1) they are detected and 2) UIDVALIDITY is changed.
Downside: It will trigger a full, expensive resynchronization for the clients.

Proof: https://aerogramme.deuxfleurs.fr/documentation/internals/imap-uid/

"But you are cheating!"
"You did not solve the problem of monotonic UID, you changed the problem!
And it’s not without impact on the end-user!"

Better than (wrongly) tweaking Raft
Kubernetes stale reads [1]
Github Orchestrator SQL corruption [2]

Optimist approaches are now safe
eg. simple frontend multiplexer

[1]: https://github.com/kubernetes/kubernetes/issues/59848
[2]: https://github.blog/2018-10-30-oct21-post-incident-analysis/

https://github.com/kubernetes/kubernetes/issues/59848
https://github.blog/2018-10-30-oct21-post-incident-analysis/

Talk is cheap,
show me the mail server!

A multi-region deployment

PAR

AMS WAW

$ dig +short MX saint-ex.deuxfleurs.org
10 aero-ams.machine.deuxfleurs.org.
10 aero-par.machine.deuxfleurs.org.
10 aero-war.machine.deuxfleurs.org.

$ dig +short imap.saint-ex.deuxfleurs.org
saint-ex.deuxfleurs.org.
51.158.189.60
151.115.61.78
163.172.173.233

$ dig +short smtp.saint-ex.deuxfleurs.org
saint-ex.deuxfleurs.org.
51.158.189.60
151.115.61.78
163.172.173.233

Focusing on one region
root@aero-ams:~/saint-ex# docker compose up -d
[+] Running 5/0
 ✔ Container saint-ex-postfix-1 Running
 ✔ Container saint-ex-garage-1 Running
 ✔ Container saint-ex-aerogramme-1 Running
 ✔ Container saint-ex-bottin-1 Running
 ✔ Container saint-ex-consul-1 Running

Notes

Postfix delivers emails to the local
Aerogramme instance only

Each device has a session
on a single random instance.

IMAP sessions = watching K2V range.
Receiving an email = range changed.

It seems it works...

https://quentin.dufour.io/aerogramme-demo.mp4

https://quentin.dufour.io/aerogramme-demo.mp4

Conclusion

Takeaways

1) Aerogramme is designed
 from the ground-up for reliability
2) Aerogramme tolerates UID conflicts,
 correctly handles them, and minimizes them.
3) Aerogramme already works in real environments

Future works

1) CalDAV and CardDAV
2) Additional user testing
3) Performance measurements/improvements

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18

