
Porting SW to riscv64
Ludovic HENRY



About

Software Engineer & Team Lead at 
● Managed Runtimes, System Libraries, Profiling

Language Runtimes WG at 
● “collaborative effort [...] to accelerate the development of open source software for the RISC-V 

architecture”
● OpenJDK, Go, Python, .NET, ART, V8
● Compilers, Runtimes, and Ecosystem (libraries, tools)

Adoptium WG
● Distributing LTS versions (11, 17, 21 in progress)

2



Intended Audience

● Some experience with RISC-V and who want to get more involved
● No experience with RISC-V but it sounds exciting (it is!)

● I will not talk Assembly
● If you don’t know a word or concept, please ask!

● Targeting “application” systems (smartphone, laptop, desktop, servers, hpc)

3



Thank you AArch64!

● Blueprint for changes: all necessary #ifdef, build/cross-compilation scripts, CI 
setup, and more

● Lots of project are either [1] x86+aarch64+ppc64+s390x or [2] x86-only 
○ Rarely in-between
○ Easy to add riscv64 to [1]
○ Need a lot more work for [2]

■ Build system: teach non-x86 specificities, cross-compilation
■ Sources: stub-out x86-specifics, memory model
■ CI: let’s dive into that later

4



● RISC-V GitHub org: spread out but the most complete
○ https://github.com/riscv/riscv-isa-manual/releases - scalar instructions
○ https://github.com/riscv/riscv-v-spec/releases/tag/v1.0 - vector instructions
○ https://github.com/riscv/riscv-crypto/releases/tag/v1.0.0 - vector crypto instructions
○ https://github.com/riscv-non-isa/rvv-intrinsic-doc/releases/tag/v1.0-rc0 - vector intrinsics
○ Watch out for Pre-Releases, things may (will!) change in subtle ways

● RISC-V V Intrinsics viewer
○ https://dzaima.github.io/intrinsics-viewer/ (14094 results 😱)

Resources

5

https://github.com/riscv/riscv-isa-manual/releases
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.0
https://github.com/riscv-non-isa/rvv-intrinsic-doc/releases/tag/v1.0-rc0
https://dzaima.github.io/intrinsics-viewer/


● Families of extensions
○ rv64gc
○ Bitmanip: Zba, Zbb, Zbs
○ Vector: V
○ Vector Crypto: Zvbb, Zvbc, Zvkg, Zvkn, and more

● Profiles: rva20, rva22, rva23
○ https://github.com/riscv/riscv-profiles/releases/tag/v1.0
○ Certainty: rv64gc + bitmanip + hwprobe for V and vector crypto
○ Expectations: future is rva23 + vector crypto (*)

● hwprobe is your friend
○ Checks for extension availability at run-time and more

Targets

6

https://github.com/riscv/riscv-profiles/releases/tag/v1.0
https://docs.kernel.org/arch/riscv/hwprobe.html


● Support in many compilers/runtimes
○ GCC, LLVM, OpenJDK, Go, Python, .NET, V8, ART, and many more
○ Various degrees of quality and support
○ Rapidly evolving
○ Importance of latest and greatest

● Support in more and more libraries
○ Most of the upcoming work
○ Gotta love transitive dependencies

Compilers / Runtimes / Libraries

7



● https://landscape.riscv.org

Compilers / Runtimes / Libraries

8

https://landscape.riscv.org


● Huge shoutout to all the contributors!
○ Many doing it on their free time

Compilers / Runtimes / Libraries

9



● Here be dragons assumptions!
● Vector Length Specific

○ Different than SSE/AVX, Neon
○ Many libraries just assume vectors are fixed lengths

● Canonical NaNs
○ Different behavior than x86
○ Sign of a NaN?

● Memory model
○ Strong (x86 TSO) vs. Weak (RVWMO)

● RVV simplicity
○ Simple to program, Hard to implement in HW
○ Depends on the microarchitecture
○ Requires broad testing

Gotchas / Difficulties

10



● QEMU is your friend!
○ Functionally: the most complete
○ User-space emulation is “easy” enough

■ apt install qemu-user-static
■ docker run -it riscv64/ubuntu bash

○ Great for (most) testing
○ Not perfect though

■ Leaky abstraction (ex: /proc/cpuinfo)
■ Not fast, particularly for linking large libraries/executables
■ Debugging gets complicated

Developing / Compiling / Testing

11



● Cross-compilation + Testing on dev boards
○ Faster build times
○ Today’s boards have limitations

■ Don’t support everything; vector, vector crypto
■ HW Bugs

Developing / Compiling / Testing

12



● QEMU is your friend (again)!
○ 1-liner on GitHub Actions

■ - uses: docker/setup-qemu-action@v3
○ You don’t even need docker!

■ Create yourself a sysroot (see debootstrap)
■ Set QEMU_LD_PREFIX=/path/to/sysroot
■ And voilà

○ Tweak available extensions with QEMU_CPU
■ rv64,zba=true,zbb=true,zbs=true,v=false
■ rv64,zba=true,zbb=true,zbs=true,v=true,vlen=128
■ rv64,zba=true,zbb=true,zbs=true,v=true,vlen=256

CI

13

https://github.com/docker/setup-qemu-action
https://manpages.debian.org/stretch/debootstrap/debootstrap.8.en.html


Performance Measurements

● QEMU is NOT your friend!
○ Not cycle accurate (vendor specific, secret)
○ Maybe instruction count (very inaccurate!)

● Boards
○ Imagine optimizing for AWS Graviton 4 by measuring on 1st gen Raspberry Pi

■ In-order CPU, few cores, limited scalability
○ Only 1 supports vector today (CanMV k230)
○ It’s getting better (slowly)!

● Optimization Manual
○ Upcoming in next few days

14



Closing Thoughts

It’s FUN, and never too late. So much more work than we can handle!

Check out https://wiki.riseproject.dev for SW work to be done

If you have an idea, make a proposal (paid OSS work!)

THANK YOU TO ALL CONTRIBUTORS!

15

https://wiki.riseproject.dev
https://docs.google.com/forms/d/e/1FAIpQLScER6xuPykhPEzKbKvWujTXq2tFgR-kpZJmBiK7BaGYeltUog/viewform


Contacts

Mastodon: @ludovic_dev@mastodon.social 

Blog: https://blog.ludovic.dev/

Email: mail@ludovic.dev

Any questions? Please, ping me!

16

https://mastodon.social/@ludovic_dev
https://blog.ludovic.dev/


Learn more

● https://github.com/openjdk/jdk
● https://github.com/golang/go
● https://github.com/shibatch/sleef
● https://github.com/xtensor-stack/xsimd
● https://github.com/openssl/openssl
● https://github.com/netty/netty

17

https://github.com/openjdk/jdk
https://github.com/openjdk/jdk
https://github.com/openjdk/jdk
https://github.com/openjdk/jdk
https://github.com/openjdk/jdk
https://github.com/netty/netty

