
Making reproducible and publishable
large-scale HPC experiments

Philippe SWARTVAGHER
https://ph-sw.fr

HPC, Big Data & Data Science devroom - FOSDEM’24

February 3, 2024-1

https://ph-sw.fr/

-2

About me

Assistant Professor in Computer Science at ENSEIRB-MATMECA engineering school, Bordeaux, France

Research about HPC, MPI, runtime systems, performance analyzis and visualisation, …

> Experimental work: writing/modifying software, evaluating performance

PhD thesis:

> On the Interactions between HPC Task-based Runtime Systems and Communication Libraries

> 2019-2022

Doing HPC experiments for several years now !

February 3, 2024

-3

In this presentation...

Feedbacks from making several reproducible articles

Advertisement for Guix

Some advice (hopefully!)

Apply mostly to scientific publications

> But probably also to, e.g., blog posts

> And not only HPC!

February 3, 2024

-4

What you can find in publications...

February 3, 2024

Cool algorithms!

Nice results!

Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, Ioannis Vardas.
Using Mixed-Radix Decomposition to Enumerate Computational Resources of Deeply Hierarchical Architectures.
SC 2023 - Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, Nov 2023, Denver, CO, United States.

-5

What you can find in publications...

February 3, 2024

Cool algorithms!

Nice results!

Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, Ioannis Vardas.
Using Mixed-Radix Decomposition to Enumerate Computational Resources of Deeply Hierarchical Architectures.
SC 2023 - Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, Nov 2023, Denver, CO, United States.

« How did you
actually

implement this
algorithm? »

« I don’t understand,
show me the code! »

« Which options
did you use? »

« How did you run
the program? »

« How did
you compute
statistics? »

-6

What you can find in publications...

February 3, 2024

Cool algorithms!

Nice results!

Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, Ioannis Vardas.
Using Mixed-Radix Decomposition to Enumerate Computational Resources of Deeply Hierarchical Architectures.
SC 2023 - Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, Nov 2023, Denver, CO, United States.

« How did I
actually

implement this
algorithm? »

« I don’t understand,
show me the code! »

« Which options
did I use? »

« How did I run
the program? »

« How did I
compute

statistics? »

-7

Reproducibility

Many terms, slightly different meanings:

> Reproducibility

> Replicability

> Repeatability

> Availability

Make available everything needed to reproduce something, e.g., an experiment

> In this case: scripts and source code

February 3, 2024

https://www.acm.org/publications/policies/artifact-review-and-badging-current

-8

Why should I care?

Conferences / Journals require it and give you nice badges

For you:

> To easily come back to an experiments 6 months later

> To have trust in your experiments

> Some kind of open-source?

For others:

> To see what you actually did in practice

> To better understand what you are talking about

> To reproduce your experiments (to change or extend it, to compare themselves with it, …)

> To easily share with your colleague / collaborator / … what you did and how

Part of the contribution!

February 3, 2024

-9

The common workflow

February 3, 2024

Software Build / Installation Execution Output data Analyzis

-10

The common workflow

February 3, 2024

Software Build / Installation Execution Output data Analyzis

Source code,
version,

patches, ...

Building /
Installation

scripts
Execution

scripts
Post-processing,

plotting, …
scripts

What you need to make available (+documentation)

-11

The common workflow

February 3, 2024

Software Build / Installation Execution Output data Analyzis

Source code,
version,

patches, ...

Building /
Installation

scripts
Execution

scripts
Post-processing,

plotting, …
scripts

-12

Different levels

February 3, 2024

Availability Bit-to-bit reproducibility

Availability is a minimum

Bit-to-bit reproducibility when you manage to rebuild the exact same environment

> Not always possible

> Not always necessary: on a different system, with different input data or configuration, ...

-13

Software

February 3, 2024

Used software, version, where to download

But also: which compiler? Which compiler version? Which version of library X and Y? ...

The whole software environment is important!

How software were installed? Which building flags? Which dependencies?

Source code,
version,

patches, ...

Building /
Installation

scripts

-14

Software

February 3, 2024

Source code,
version,

patches, ...

Building /
Installation

scripts

Minimum

-15

Software

February 3, 2024

What about...

> Module files?

> Spack / Conda / Easybuild / … environments?

> Docker / Singularity / … images?

Source code,
version,

patches, ...

Building /
Installation

scripts

-16

Software

February 3, 2024

What about...

> Module files → specific to a system, don’t say how it is build, may disappear after some time

> Spack / Conda / Easybuild / … environments → don’t fully isolate the environment, depends on
what is already installed on the system

> Docker / Singularity / … images → what it inside the image? Building the image 6 months later
may contain different things

Source code,
version,

patches, ...

Building /
Installation

scripts

No garantee of being always reproducible!
Even worse: give the feeling of being reproducible

-17

Enters… Guix!

February 3, 2024

From https://hpc.guix.info:

> Transactional package manager

> Create as many software environments as you like (like virtualenv but not only for Python; like
module, but for every software defined in Guix)

> The software environments created with Guix are fully reproducible: a package built from a specific
Guix commit on your laptop will be exactly the same as the one built on the HPC cluster you deploy it
too, usually bit-for-bit.

-18

Software

February 3, 2024

Source code,
version,

patches, ...

Building /
Installation

scripts

module load openmpi/4.1.2
Build chameleon
cmake .. -DFOO=BAR
make && make install
mpirun ...

guix shell --pure chameleon -- mpirun ...

-19

Software

February 3, 2024

All Guix package definitions are located in Guix channels

> Actually Git repositories

> → Commit hashes of used Guix channels pin versions of all packages

(solves problem of pinning versions of dependencies of dependencies)

> Everything except the kernel

Source code,
version,

patches, ...

Building /
Installation

scripts

-20

Software

February 3, 2024

Export currently used channels (and their versions):

guix describe -f channels > channels.scm

Explicitly use pinned channels:

guix time-machine
--channels=./channels.scm -- shell --pure
chameleon -- mpirun …

Backup channels.scm: to be sure to execute the
same code, even 6 months later

Source code,
version,

patches, ...

Building /
Installation

scripts

(list (channel
 (name 'guix)
 (url "https://git.savannah.gnu.org/git/guix.git")
 (branch "master")
 (commit
 "ec66f84824198f380d20126d3e4b2ea795fd205a")
 (introduction
 (make-channel-introduction
 "9edb3f66fd807b096b48283debdcddccfea34bad"
 (openpgp-fingerprint
 "BBB0 2DDF 2CEA F6A8 0D1D E643 A2A0 6DF2 A33A 54FA"))))
 (channel
 (name 'guix-hpc-non-free)
 (url "https://gitlab.inria.fr/guix-hpc/guix-hpc-non-free.git")
 (branch "master")
 (commit
 "58aaac8c18773d900511d441e935145d73cdfc5e"))
 (channel
 (name 'guix-hpc)
 (url "https://gitlab.inria.fr/guix-hpc/guix-hpc.git")
 (branch "master")
 (commit
 "74840c47b744ad7342e7a86852831009a2831630")))

-21

The Guix killer feature:
package transformations

February 3, 2024

Change package definition on-the-fly

Simple package substitution:
guix shell --pure chameleon --with-input=openblas=mkl -- mpirun …

Use a specific upstream branch, commit, version…:
guix shell --pure chameleon --with-commit=starpu=acae6e -- mpirun …

Apply a patch to package source code:
guix shell --pure chameleon --with-patch=chameleon=./foo.patch -- mpirun …

And others

Makes the installation of software much easier!
> No need for installation scripts and instructions anymore!

Source code,
version,

patches, ...

Building /
Installation

scripts

https://guix.gnu.org/en/manual/devel/en/html_node/Package-Transformation-Options.html

-22

Guix: what about performance?

February 3, 2024

Should be the same

What is not in Guix: tuning of libraries made by cluster providers

> @Cluster providers: please share these modifications!

What is in Guix: package transformation --tune to rebuild package for a specific processor architecture

One of the goal of the Guix-HPC effort

https://hpc.guix.info
https://hpc.guix.info/blog/2022/01/tuning-packages-for-a-cpu-micro-architecture/
https://hpc.guix.info/blog/2019/12/optimized-and-portable-open-mpi-packaging/

https://hpc.guix.info/
https://hpc.guix.info/blog/2022/01/tuning-packages-for-a-cpu-micro-architecture/

-23

Execution scripts

February 3, 2024

Comment!

> What you are doing and why

Try to separate what is specific to your experiment (platform, input data, ...) and experiment logic:

> Job scheduler system

> Used resources (number of nodes, cores, …)

> Paths, usernames, problem size, input data, ...

Execution
scripts

-24

Post-processing, plotting, … scripts

February 3, 2024

Also executed inside a Guix environment!

Seperate post-processing (analyzing data, computing what will be plotted) from plotting

> Ease (and accelerate!) the writting of plotting scripts

Factorization (moving things to functions, modules, ...) is not always a good idea

> You may need to add annotation to this specific plot

> You may need to compute this specific value only for this kind of data

> Scripts have to remain flexible enough

Post-processing,
plotting, …

scripts

-25

Post-processing, plotting, … scripts (2)

February 3, 2024

Directly generate from scripts codes of table to be included in your TeX file

> Think if you need to change how you compute all the values...Post-processing,
plotting, …

scripts
\begin{tabular}{|c|c|c|c|c|c|c|c|}
 % ...
 \hline
 \henri & \percent{2.62} & \percent{3.53} & \percent{3.08} \\
 \hline
 \henrisubnuma & \percent{2.90} & \percent{3.80} & \percent{3.69} \\
 \hline
 \bora & \percent{4.39} & \percent{5.14} & \percent{4.77} \\
 \hline
 \dahu & \percent{2.76} & \percent{2.38} & \percent{2.57} \\
 \hline
 \diablo & \percent{2.32} & \percent{1.54} & \percent{1.93} \\
 \hline
 \grvingt & \percent{3.41} & \percent{8.06} & \percent{5.74} \\
 \hline
 \pyxis & \percent{1.15} & \percent{13.32} & \percent{7.24} \\
 \hline
 \occigen & \percent{0.01} & \percent{0.01} & \percent{0.01} \\
 \hline
 \textbf{Average} & \percent{3.09} & \percent{5.40} & \percent{4.28} \\
 \hline
\end{tabular}

-26

Document things

February 3, 2024

In a README.md

What is this about? Link to the paper

What do I need for described experiments?

> Which hardware, how many nodes, …

> How much storage, RAM, …

> How much time

Installation and execution instructions with and without Guix

For each table, plot, … in the paper:

> Section about how it is done, folder containing scripts and other relevant resources

-27

Where to make it available?

February 3, 2024

A Git repository

Dedicated repository: paper-title-reproducibility → paper-title-r13y

-28

Where to make it available?

February 3, 2024

A Git repository

Dedicated repository: paper-title-reproducibility → paper-title-r13y

Archive it forever on SoftwareHeritage!

> Will give you a SWHID to identify your repository / snapshot / directory

> Like a DOI but computed based on archived content (like a Git commit ID)

https://archive.softwareheritage.org/

-29

Reference it in publications

February 3, 2024

-30

(Almost) Last remarks

Have reproducibility in mind from the beginning of your experiments

If bit-to-bit reproducibility seems difficult, at least publish your code and scripts

> To have at least availability

Guix is not mandatory!

> But very handy tool to get bit-to-bit reproducibility for (almost) free

What about data (input, output, pre- and post-processed)?

> Don’t have a strong opinion yet

> Host everything on Zenodo or equivalent?

> Mandatory for reproducibility

February 3, 2024

-31

Some initiatives
ReScience C Journal

> Publication of articles explaining how another article was replicated (or not)

> Open and public reviewing process

Ten Years Reproducibility Challenge

> Reproduce one of your 10 year old articles

Guix Past

> Guix channel containing old software, old versions

Follow the activity of Guix-HPC for blog posts and events!

February 3, 2024

https://rescience.github.io/
https://rescience.github.io/ten-years/
https://gitlab.inria.fr/guix-hpc/guix-past
https://hpc.guix.info/

https://rescience.github.io/ten-years/

-32

Conclusion
Publish source code of your software and experiment scripts
Document it

Reproducibility adds more value to experiments, results, research

You will be more confident about your experiments

> Especially in case you need to run them again

It contributes to makes a better science!

> Spread the word!

February 3, 2024

https://hpc.guix.info/blog/2023/06/a-guide-to-reproducible-research-papers/
https://gitlab.tuwien.ac.at/philippe.swartvagher/paper-mpi-rank-reordering-r13y
https://gitlab.inria.fr/pswartva/paper-starpu-traces-r13y/
https://gitlab.inria.fr/pswartva/paper-model-memory-contention-r13y

	Titre de la présentation sur plusieurs lignes
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32

