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About me

Assistant Professor in Computer Science at ENSEIRB-MATMECA engineering school, Bordeaux, France

Research about HPC, MPI, runtime systems, performance analyzis and visualisation, …

> Experimental work: writing/modifying software, evaluating performance

PhD thesis:

> On the Interactions between HPC Task-based Runtime Systems and Communication Libraries

> 2019-2022

Doing HPC experiments for several years now !
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In this presentation...

Feedbacks from making several reproducible articles

Advertisement for Guix

Some advice (hopefully!)

Apply mostly to scientific publications

> But probably also to, e.g., blog posts

> And not only HPC!

February 3, 2024
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What you can find in publications...
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Cool algorithms!

Nice results!

Philippe Swartvagher, Sascha Hunold, Jesper Larsson Träff, Ioannis Vardas.
Using Mixed-Radix Decomposition to Enumerate Computational Resources of Deeply Hierarchical Architectures. 
SC 2023 - Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, Nov 2023, Denver, CO, United States.
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« How did you 
actually 

implement this 
algorithm? »

« I don’t understand, 
show me the code! »

« Which options 
did you use? »

« How did you run 
the program?  »

« How did 
you compute 
statistics?  »
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Reproducibility

Many terms, slightly different meanings:

> Reproducibility

> Replicability

> Repeatability

> Availability

Make available everything needed to reproduce something, e.g., an experiment

> In this case: scripts and source code

February 3, 2024

https://www.acm.org/publications/policies/artifact-review-and-badging-current
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Why should I care?

Conferences / Journals require it and give you nice badges

For you:

> To easily come back to an experiments 6 months later

> To have trust in your experiments

> Some kind of open-source?

For others:

> To see what you actually did in practice

> To better understand what you are talking about

> To reproduce your experiments (to change or extend it, to compare themselves with it, …)

> To easily share with your colleague / collaborator / … what you did and how

Part of the contribution!

February 3, 2024
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The common workflow
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Software Build / Installation Execution Output data Analyzis
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Software Build / Installation Execution Output data Analyzis

Source code, 
version, 

patches, ...

Building /
Installation

scripts
Execution

scripts
Post-processing,

plotting, … 
scripts
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Installation

scripts
Execution
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scripts



-12

Different levels
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Availability Bit-to-bit reproducibility

Availability is a minimum

Bit-to-bit reproducibility when you manage to rebuild the exact same environment

> Not always possible

> Not always necessary: on a different system, with different input data or configuration, ...
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Software
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Used software, version, where to download

But also: which compiler? Which compiler version? Which version of library X and Y? ...

The whole software environment is important!

How software were installed? Which building flags? Which dependencies?

Source code, 
version, 

patches, ...

Building /
Installation

scripts
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Software
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Source code, 
version, 

patches, ...

Building /
Installation

scripts

Minimum
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Software
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What about...

> Module files?

> Spack / Conda / Easybuild / … environments?

> Docker / Singularity / … images?

Source code, 
version, 

patches, ...

Building /
Installation

scripts
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Software
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What about...

> Module files → specific to a system, don’t say how it is build, may disappear after some time

> Spack / Conda / Easybuild / … environments → don’t fully isolate the environment, depends on 
what is already installed on the system

> Docker / Singularity / … images → what it inside the image? Building the image 6 months later 
may contain different things

Source code, 
version, 

patches, ...

Building /
Installation

scripts

No garantee of being always reproducible!
Even worse: give the feeling of being reproducible
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Enters… Guix!
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From https://hpc.guix.info:

> Transactional package manager

> Create  as many software environments as you like (like virtualenv but  not only for Python; like 
module, but for every software defined in Guix)

> The software environments created with Guix are fully reproducible: a package built from a specific 
Guix commit on your laptop will be exactly the same as the one built on the HPC cluster you deploy it 
too, usually bit-for-bit.
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Software
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Source code, 
version, 

patches, ...

Building /
Installation

scripts

module load openmpi/4.1.2
# Build chameleon
cmake .. -DFOO=BAR
make && make install 
mpirun ...

guix shell --pure chameleon -- mpirun ...
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Software
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All Guix package definitions are located in Guix channels

> Actually Git repositories

> → Commit hashes of used Guix channels pin versions of all packages

(solves problem of pinning versions of dependencies of dependencies)

> Everything except the kernel

Source code, 
version, 

patches, ...

Building /
Installation

scripts
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Software
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Export currently used channels (and their versions):

guix describe -f channels > channels.scm

Explicitly use pinned channels:

guix time-machine 
--channels=./channels.scm -- shell --pure 
chameleon -- mpirun …

Backup channels.scm: to be sure to execute the 
same code, even 6 months later 

Source code, 
version, 

patches, ...

Building /
Installation

scripts

(list (channel
        (name 'guix)
        (url "https://git.savannah.gnu.org/git/guix.git")
        (branch "master")
        (commit
          "ec66f84824198f380d20126d3e4b2ea795fd205a")
        (introduction
          (make-channel-introduction
            "9edb3f66fd807b096b48283debdcddccfea34bad"
            (openpgp-fingerprint
              "BBB0 2DDF 2CEA F6A8 0D1D  E643 A2A0 6DF2 A33A 54FA"))))
      (channel
        (name 'guix-hpc-non-free)
        (url "https://gitlab.inria.fr/guix-hpc/guix-hpc-non-free.git")
        (branch "master")
        (commit
          "58aaac8c18773d900511d441e935145d73cdfc5e"))
      (channel
        (name 'guix-hpc)
        (url "https://gitlab.inria.fr/guix-hpc/guix-hpc.git")
        (branch "master")
        (commit
          "74840c47b744ad7342e7a86852831009a2831630")))
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The Guix killer feature: 
package transformations
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Change package definition on-the-fly

Simple package substitution:
guix shell --pure chameleon --with-input=openblas=mkl -- mpirun …

Use a specific upstream branch, commit, version…:
guix shell --pure chameleon --with-commit=starpu=acae6e -- mpirun …

Apply a patch to package source code:
guix shell --pure chameleon --with-patch=chameleon=./foo.patch -- mpirun …

And others

Makes the installation of software much easier!
> No need for installation scripts and instructions anymore!

Source code, 
version, 

patches, ...

Building /
Installation

scripts

https://guix.gnu.org/en/manual/devel/en/html_node/Package-Transformation-Options.html
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Guix: what about performance?
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Should be the same

What is not in Guix: tuning of libraries made by cluster providers

> @Cluster providers: please share these modifications!

What is in Guix: package transformation --tune to rebuild package for a specific processor architecture 

One of the goal of the Guix-HPC effort

https://hpc.guix.info
https://hpc.guix.info/blog/2022/01/tuning-packages-for-a-cpu-micro-architecture/
https://hpc.guix.info/blog/2019/12/optimized-and-portable-open-mpi-packaging/

https://hpc.guix.info/
https://hpc.guix.info/blog/2022/01/tuning-packages-for-a-cpu-micro-architecture/
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Execution scripts
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Comment!

> What you are doing and why

Try to separate what is specific to your experiment (platform, input data, ...) and experiment logic:

> Job scheduler system

> Used resources (number of nodes, cores, …)

> Paths, usernames, problem size, input data, ...

Execution
scripts
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Post-processing, plotting, … scripts
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Also executed inside a Guix environment!

Seperate post-processing (analyzing data, computing what will be plotted) from plotting

> Ease (and accelerate!) the writting of plotting scripts

Factorization (moving things to functions, modules, ...) is not always a good idea

> You may need to add annotation to this specific plot

> You may need to compute this specific value only for this kind of data

> Scripts have to remain flexible enough

Post-processing,
plotting, … 

scripts
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Post-processing, plotting, … scripts (2)
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Directly generate from scripts codes of table to be included in your TeX file

> Think if you need to change how you compute all the values...Post-processing,
plotting, … 

scripts
\begin{tabular}{|c|c|c|c|c|c|c|c|}
  % ...
      \hline
      \henri & \percent{2.62} & \percent{3.53} & \percent{3.08} \\
      \hline
      \henrisubnuma & \percent{2.90} & \percent{3.80} & \percent{3.69} \\
      \hline
      \bora & \percent{4.39} & \percent{5.14} & \percent{4.77} \\
      \hline
      \dahu & \percent{2.76} & \percent{2.38} & \percent{2.57} \\
      \hline
      \diablo & \percent{2.32} & \percent{1.54} & \percent{1.93} \\
      \hline
      \grvingt & \percent{3.41} & \percent{8.06} & \percent{5.74} \\
      \hline
      \pyxis & \percent{1.15} & \percent{13.32} & \percent{7.24} \\
      \hline
      \occigen & \percent{0.01} & \percent{0.01} & \percent{0.01} \\
      \hline
      \textbf{Average} & \percent{3.09} & \percent{5.40} & \percent{4.28} \\
      \hline
\end{tabular}
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Document things
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In a README.md

What is this about? Link to the paper

What do I need for described experiments? 

> Which hardware, how many nodes, …

> How much storage, RAM, …

> How much time

Installation and execution instructions with and without Guix

For each table, plot, … in the paper:

> Section about how it is done, folder containing scripts and other relevant resources
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Where to make it available?
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A Git repository

Dedicated repository: paper-title-reproducibility  →  paper-title-r13y
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Where to make it available?
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A Git repository

Dedicated repository: paper-title-reproducibility  →  paper-title-r13y

Archive it forever on SoftwareHeritage!

> Will give you a SWHID to identify your repository / snapshot / directory

> Like a DOI but computed based on archived content (like a Git commit ID)

https://archive.softwareheritage.org/
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Reference it in publications

February 3, 2024
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(Almost) Last remarks

Have reproducibility in mind from the beginning of your experiments

If bit-to-bit reproducibility seems difficult, at least publish your code and scripts

> To have at least availability

Guix is not mandatory!

> But very handy tool to get bit-to-bit reproducibility for (almost) free

What about data (input, output, pre- and post-processed)?

> Don’t have a strong opinion yet

> Host everything on Zenodo or equivalent?

> Mandatory for reproducibility

February 3, 2024
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Some initiatives
ReScience C Journal

> Publication of articles explaining how another article was replicated (or not)

> Open and public reviewing process

Ten Years Reproducibility Challenge

> Reproduce one of your 10 year old articles

Guix Past

> Guix channel containing old software, old versions

Follow the activity of Guix-HPC for blog posts and events!

February 3, 2024

https://rescience.github.io/
https://rescience.github.io/ten-years/
https://gitlab.inria.fr/guix-hpc/guix-past
https://hpc.guix.info/

https://rescience.github.io/ten-years/
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Conclusion
Publish source code of your software and experiment scripts
Document it

Reproducibility adds more value to experiments, results, research

You will be more confident about your experiments

> Especially in case you need to run them again

It contributes to makes a better science!

> Spread the word!

February 3, 2024

https://hpc.guix.info/blog/2023/06/a-guide-to-reproducible-research-papers/
https://gitlab.tuwien.ac.at/philippe.swartvagher/paper-mpi-rank-reordering-r13y
https://gitlab.inria.fr/pswartva/paper-starpu-traces-r13y/
https://gitlab.inria.fr/pswartva/paper-model-memory-contention-r13y
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