
Online
Debugging and ABI Data Services
FOSDEM 2024-02-03

Frank Ch. Eigler <fche@redhat.com>

Compile, Distribute, Run
● Source code goes in
● Binaries come out
● Binaries go into distros
● Users run binaries

What about debugging?
● When binaries fail, you need debuggers.
● Debuggers examine machine level state.
● This needs metadata: DWARF from compiler.
● Also used by: tracing, profiling, crash-dump systems.
● Very old way: only developers debug based on own binaries.
● Old way: manual install stripped debug packages as root.
● New way (2019+): automated via debuginfod

Online services for debuginfo
● For linux: https://debuginfod.elfutils.org/.
● Gets debuginfo and source code on the fly.
● User chooses favorite servers, and may operate own server.
● All major debugging-type tools in linux world are clients.
● Fedora/CentOS/SuSE, Debian/Ubuntu, Arch and more operate

servers.
● Coming soon: crypto integrity checking, metadata, srcfiles
● (Some other operating systems and distros have similar solutions.)

https://debuginfod.elfutils.org/

debuginfod try this at home
● % export DEBUGINFOD_URLS=https://debuginfod.elfutils.org/

● % eu-stack -v -p $$ # elfutils

● % gdb -args /bin/ls

(gdb) break main

(gdb) run

What about compatibility checking?
● Tricky to build binaries for more than one distro.
● Even building for different version of same OS is tricky.
● Why? Because APIs and ABIs change.
● API: compile-time problem, easier.
● ABI: run-time compatibility, tougher.
● Bundling solutions: flatpak, containers, static linking, etc.
● Can check for ABI changes instead.

What is an ABI?
● Makes shared libraries possible!
● Assembler level interoperability rules.
● The signature of every function entry point.
● Exact memory layout of global variables & types.
● … and their transitive closure.
● Sometimes compiler / version dependent.
● Same information as in the debuginfo!

How to check compatibility?
● Roll the dice and run it? Examine header files?
● Or use analysis tool: https://sourceware.org/libabigail
● Can compare different shared library versions.
● Or compare needs of a binary to any shared library.
● Needs debuginfo of some sort, and works with debuginfod!
● Can generate and use an XML representation of ABI as proxy.
● Still large, but not as large as debuginfo.

https://sourceware.org/libabigail

Collect it
● ABI XML is textual!
● Text is easy to share centrally, compressible, use git!
● Prototyping a little tool “abidb”, fitting into libabigail.
● Stores abi xml grouped by SONAME into per-distro branches.
● Can generate and submit abi xml documents into a git repo.
● Can take RPMs, DEBs, or just plain binaries.
● Can represent multiple updated versions of same library.
● Can query a binary against any relevant abi xml in git.

Abidb try this at home
● % git clone https://sourceware.org/git/libabigail.git

● % [... build/install from users/fche/abidb branch ...]

● % git clone https://sourceware.org/git/abidb.git # 9 GB

● % cd abidb

● % abidb --check $random_binary

● % abidb --distrobranch ubuntu/20.04/x86_64 --check $random_binary

● % abidb --submit /usr/local/libfoo.so

● % find -name .rpm | xargs abidb -Zrpm \
 --distrobranch foo/bar --submit

● % git push

https://sourceware.org/git/libabigail.git
https://sourceware.org/git/abidb.git

Online services
● debuginfod: https://debuginfod.elfutils.org/
● abidb corpus: https://sourceware.org/git/abidb.git
● Low complexity, low tech-novelty services you can run for yourself.
● Can also use or federate to public servers.

● Simple tech helps solve the debuginfo and abi metadata
distribution problems.

https://debuginfod.elfutils.org/
https://sourceware.org/git/abidb.git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

