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SemVer is communication
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no mere mortals can uphold it.
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Here’s how hard 
SemVer is in Rust
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SemVer violations are
miscommunication
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>3% of the 14000 scanned releases
had at least one SemVer violation
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Statistically, there’s 
a semver violation 
somewhere in here…
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● Adding new items to a module

● Changes that break type inference
(requiring type annotations in downstream code)

● Reverting accidental API changes

● Critical soundness or security fixes,
subject to the maintainer’s judgment call
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● Breaking changes always require major versions
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SemVer’s rules are complex!
Automation can help!
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SemVer is so hard, 
no mere mortals can uphold it.

Computers are no mere mortals. 
They are really good at SemVer.

They are best where we 
do poorly, and vice versa.







cargo semver-checks && cargo publish
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cargo semver-checks && cargo publish

cargo install cargo-semver-checks --lockedDetects the version bump, 
then scans for API changes 

inappropriate for that bump.
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Examples



Example #1: pub fn gets deleted

https://github.com/obi1kenobi/semver-examples/compare/main...easy_01
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$ cargo semver-checks

     Parsing easy_01 v0.1.0 (current)

     Parsing easy_01 v0.1.0 (baseline)

    Checking easy_01 v0.1.0 -> v0.1.0 (no change)

   Completed [   0.011s] 58 checks; 57 passed, 1 failed, 0 unnecessary

--- failure function_missing: pub fn removed or renamed ---

Description:

A publicly-visible function cannot be imported by its prior path. A `pub use` may have been 

removed, or the function itself may have been renamed or removed entirely.

Failed in:

  function easy_01::add, previously in file semver-examples/easy_01/old/src/lib.rs:1

       Final [   0.012s] semver requires new major version: 1 major and 0 minor checks failed
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● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change
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● Adding fields to a struct can only be breaking via changes to its methods
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    Checking med_01 v0.1.0 -> v0.1.0 (no change)

   Completed [   0.010s] 58 checks; 57 passed, 1 failed, 0 unnecessary

--- failure constructible_struct_adds_field: externally-constructible struct adds field ---

Description:

A pub struct constructible with a struct literal has a new pub field. Existing struct literals 

must be updated to include the new field.

Failed in:

  field Foo::third, in file semver-examples/med_01/new/src/lib.rs:4

       Final [   0.010s] semver requires new major version: 1 major and 0 minor checks failed
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Example #3: “internal-only changes”

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01
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● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

● Adding fields to a struct can only be breaking via changes to its methods

● “If I didn’t touch it, I didn’t break it.”
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$ cargo semver-checks

     Parsing hard_01 v0.1.0 (current)

     Parsing hard_01 v0.1.0 (baseline)

    Checking hard_01 v0.1.0 -> v0.1.0 (no change)

   Completed [   0.010s] 58 checks; 57 passed, 1 failed, 0 unnecessary

--- failure auto_trait_impl_removed: auto trait no longer implemented ---

Description:

A public type has stopped implementing one or more auto traits. This can break downstream code 

that depends on those traits being implemented.

Failed in:

  type Bar is no longer Send, in file semver-examples/hard_01/new/src/lib.rs:16

  type Bar is no longer Sync, in file semver-examples/hard_01/new/src/lib.rs:16

       Final [   0.010s] semver requires new major version: 1 major and 0 minor checks failed
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… right? 😅
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I didn’t touch it, so I didn’t break it

… right? 😅

type Bar is in here

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01


Bar is public, so its 
implemented traits are public.

Bar contains a Foo.
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Auto-traits: traits that are automatically 
implemented for us whenever possible.

A type implements an auto-trait
if all its constituents also implement the trait.

&’static str is both Send and Sync.
Rc<str> is neither.
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cargo semver-checks && cargo publish

cargo install cargo-semver-checks --lockedDetects the version bump,
then scans for API changes 

inappropriate for that bump.



How does this work?
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& Now, the same import name 
no longer satisfies the above
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Trustfall: Turn everything into a database!

Represent data as a graph, then query any data sources

● Battle-tested: 7+ years in production

● Engine built in Rust; adapters can be Rust / Python / JS / WASM

● Query APIs, databases, arbitrary file formats — in-place & without ETL!

FOSS on GitHub: https://github.com/obi1kenobi/trustfall

https://github.com/obi1kenobi/trustfall


Trustfall: Turn everything into a database!

Talks on Trustfall:

● “How to Query (Almost) Everything” — HYTRADBOI 2022
https://www.hytradboi.com/2022/how-to-query-almost-everything

● “How Database Tricks Sped up Rust Linting Over 2000x” — P99 CONF 2023 
https://www.youtube.com/watch?v=Fqo8r4bInsk

Try Trustfall in our playgrounds:

● rustdoc JSON: https://play.predr.ag/rustdoc

● HackerNews REST APIs: https://play.predr.ag/hackernews

https://www.hytradboi.com/2022/how-to-query-almost-everything
https://www.youtube.com/watch?v=Fqo8r4bInsk
https://play.predr.ag/rustdoc
https://play.predr.ag/hackernews


Trustfall makes cargo-semver-checks possible

Focus on linting & ergonomics, not rustdoc JSON format changes

● 58 lints and growing — twice as many as a year ago

● 32 contributors and growing — many new lints are first-time contributions!

● Our users love us!
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Trustfall makes cargo-semver-checks possible

Focus on linting & ergonomics, not rustdoc JSON format changes

● 58 lints and growing — twice as many as a year ago

● 32 contributors and growing — many new lints are first-time contributions!

● Our users love us!

https://github.com/libp2p/rust-libp2p/pull/3073#issuecomment-1299582893
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SemVer is valuable, but impossible without automated help.

cargo-semver-checks is a solution with lots of happy users.
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