
SemVer in Rust:
breakage, tooling, and edge cases

Predrag Gruevski
PredragGruevski obi1kenobihttps://predr.ag/ @predrag@hachyderm.io

Predrag Gruevski
PredragGruevski obi1kenobihttps://predr.ag/ @predrag@hachyderm.io

SemVer is communication

SemVer is so hard,
no mere mortals can uphold it.

Computers are no mere mortals.
They are really good at SemVer.

SemVer is so hard,
no mere mortals can uphold it.

SemVer is so hard,
no mere mortals can uphold it.

Computers are no mere mortals.
They are really good at SemVer.

Here’s how hard
SemVer is in Rust

Falsehoods we believed about SemVer

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

SemVer violations are
miscommunication

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

1 in 6 of the top 1000 crates
have broken SemVer at least once

Joint work with Tomasz Nowak, Mieszko Grodzicki, Bartosz Smolarczyk, Michał Staniewski
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

1 in 6 of the top 1000 crates
have broken SemVer at least once

Joint work with Tomasz Nowak, Mieszko Grodzicki, Bartosz Smolarczyk, Michał Staniewski
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

1 in 6 of the top 1000 crates
have broken SemVer at least once

Joint work with Tomasz Nowak, Mieszko Grodzicki, Bartosz Smolarczyk, Michał Staniewski
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

>3% of the 14000 scanned releases
had at least one SemVer violation

Joint work with Tomasz Nowak, Mieszko Grodzicki, Bartosz Smolarczyk, Michał Staniewski
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

Statistically, there’s
a semver violation
somewhere in here…

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

● Adding new items to a module

● Changes that break type inference
(requiring type annotations in downstream code)

● Reverting accidental API changes

● Critical soundness or security fixes,
subject to the maintainer’s judgment call

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

● Adding new items to a module

● Changes that break type inference
(requiring type annotations in downstream code)

● Reverting accidental API changes

● Critical soundness or security fixes,
subject to the maintainer’s judgment call

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

● Adding new items to a module

● Changes that break type inference
(requiring type annotations in downstream code)

● Reverting accidental API changes

● Critical soundness or security fixes,
subject to the maintainer’s judgment call

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

● Adding new items to a module

● Changes that break type inference
(requiring type annotations in downstream code)

● Reverting accidental API changes

● Critical soundness or security fixes,
subject to the maintainer’s judgment call

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

SemVer’s rules are complex!
Can we automate them?

SemVer’s rules are complex!
Automation can help!

SemVer is so hard,
no mere mortals can uphold it.

Computers are no mere mortals.
They are really good at SemVer.

SemVer is so hard,
no mere mortals can uphold it.

Computers are no mere mortals.
They are really good at SemVer.

They are best where we
do poorly, and vice versa.

cargo semver-checks && cargo publish

cargo install cargo-semver-checks --locked

cargo semver-checks && cargo publish

cargo install cargo-semver-checks --lockedDetects the version bump,
then scans for API changes

inappropriate for that bump.

cargo semver-checks && cargo publish

cargo install cargo-semver-checks --locked

Examples

Example #1: pub fn gets deleted

https://github.com/obi1kenobi/semver-examples/compare/main...easy_01

https://github.com/obi1kenobi/semver-examples/compare/main...easy_01

$ cargo semver-checks

 Parsing easy_01 v0.1.0 (current)

 Parsing easy_01 v0.1.0 (baseline)

 Checking easy_01 v0.1.0 -> v0.1.0 (no change)

 Completed [0.011s] 58 checks; 57 passed, 1 failed, 0 unnecessary

--- failure function_missing: pub fn removed or renamed ---

Description:

A publicly-visible function cannot be imported by its prior path. A `pub use` may have been

removed, or the function itself may have been renamed or removed entirely.

Failed in:

 function easy_01::add, previously in file semver-examples/easy_01/old/src/lib.rs:1

 Final [0.012s] semver requires new major version: 1 major and 0 minor checks failed

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

Example #2: adding a field to a struct

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

● Adding fields to a struct can only be breaking via changes to its methods

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

● Adding fields to a struct can only be breaking via changes to its methods

Example #2: adding a field to a struct

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

Example #2: adding a field to a struct

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

Not marked
#[non_exhaustive]

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

Example #2: adding a field to a struct

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

All prior fields were pub

Not marked
#[non_exhaustive]

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

Example #2: adding a field to a struct

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

All prior fields were pub

Not marked
#[non_exhaustive]

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

$ cargo semver-checks

 Parsing med_01 v0.1.0 (current)

 Parsing med_01 v0.1.0 (baseline)

 Checking med_01 v0.1.0 -> v0.1.0 (no change)

 Completed [0.010s] 58 checks; 57 passed, 1 failed, 0 unnecessary

--- failure constructible_struct_adds_field: externally-constructible struct adds field ---

Description:

A pub struct constructible with a struct literal has a new pub field. Existing struct literals

must be updated to include the new field.

Failed in:

 field Foo::third, in file semver-examples/med_01/new/src/lib.rs:4

 Final [0.010s] semver requires new major version: 1 major and 0 minor checks failed

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

● Adding fields to a struct can only be breaking via changes to its methods

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

● Adding fields to a struct can only be breaking via changes to its methods

Example #3: “internal-only changes”

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

● Adding fields to a struct can only be breaking via changes to its methods

● “If I didn’t touch it, I didn’t break it.”

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

● Adding fields to a struct can only be breaking via changes to its methods

● “If I didn’t touch it, I didn’t break it.”

$ cargo semver-checks

 Parsing hard_01 v0.1.0 (current)

 Parsing hard_01 v0.1.0 (baseline)

 Checking hard_01 v0.1.0 -> v0.1.0 (no change)

 Completed [0.010s] 58 checks; 57 passed, 1 failed, 0 unnecessary

--- failure auto_trait_impl_removed: auto trait no longer implemented ---

Description:

A public type has stopped implementing one or more auto traits. This can break downstream code

that depends on those traits being implemented.

Failed in:

 type Bar is no longer Send, in file semver-examples/hard_01/new/src/lib.rs:16

 type Bar is no longer Sync, in file semver-examples/hard_01/new/src/lib.rs:16

 Final [0.010s] semver requires new major version: 1 major and 0 minor checks failed

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

I didn’t touch it, so I didn’t break it

… right? 😅

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

I didn’t touch it, so I didn’t break it

… right? 😅

type Bar is in here

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

Bar is public, so its
implemented traits are public.

Bar contains a Foo.

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

Bar is public, so its
implemented traits are public.

Bar contains a Foo.

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

Auto-traits: traits that are automatically
implemented for us whenever possible.

A type implements an auto-trait
if all its constituents also implement the trait.

&’static str is both Send and Sync.
Rc<str> is neither.

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

Bar is public, so its
implemented traits are public.

Bar contains a Foo.

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

Auto-traits: traits that are automatically
implemented for us whenever possible.

A type implements an auto-trait
if all its constituents also implement the trait.

&’static str is both Send and Sync.
Rc<str> is neither.

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

● Adding fields to a struct can only be breaking via changes to its methods

● “If I didn’t touch it, I didn’t break it.”

Falsehoods we believed about SemVer

● Crates always adhere to SemVer

● Careful coding is enough to avoid violating SemVer

● Breaking changes always require major versions

● Deletions of pub items are always a major breaking change

● Adding fields to a struct can only be breaking via changes to its methods

● “If I didn’t touch it, I didn’t break it.”

cargo semver-checks && cargo publish

cargo install cargo-semver-checks --lockedDetects the version bump,
then scans for API changes

inappropriate for that bump.

How does this work?

Example: pub fn gets deleted

https://github.com/obi1kenobi/semver-examples/compare/main...easy_01

https://github.com/obi1kenobi/semver-examples/compare/main...easy_01

Example: pub fn gets deleted

Breaking change if all of these are true:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

Example: pub fn gets deleted

Breaking change if all of these are true:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

Example: pub fn gets deleted

Breaking change if all of these are true:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

Example: pub fn gets deleted

Breaking change if all of these are true:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

Example: pub fn gets deleted

Breaking change if all of these are true:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

Example: pub fn gets deleted

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

Example: pub fn gets deleted

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This sounds like a database query…

Database query!

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This sounds like a database query…

Database query!

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This is a database query!

Database query!

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This is a database query!

Database query!

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This is a database query!

Database query!

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This is a database query!

Database query!

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This is a database query!

Database query!

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This is a database query!

Trustfall: Turn everything into a database!

Represent data as a graph, then query any data sources

● Battle-tested: 7+ years in production

● Engine built in Rust; adapters can be Rust / Python / JS / WASM

● Query APIs, databases, arbitrary file formats — in-place & without ETL!

FOSS on GitHub: https://github.com/obi1kenobi/trustfall

https://github.com/obi1kenobi/trustfall

Trustfall: Turn everything into a database!

Talks on Trustfall:

● “How to Query (Almost) Everything” — HYTRADBOI 2022
https://www.hytradboi.com/2022/how-to-query-almost-everything

● “How Database Tricks Sped up Rust Linting Over 2000x” — P99 CONF 2023
https://www.youtube.com/watch?v=Fqo8r4bInsk

Try Trustfall in our playgrounds:

● rustdoc JSON: https://play.predr.ag/rustdoc

● HackerNews REST APIs: https://play.predr.ag/hackernews

https://www.hytradboi.com/2022/how-to-query-almost-everything
https://www.youtube.com/watch?v=Fqo8r4bInsk
https://play.predr.ag/rustdoc
https://play.predr.ag/hackernews

Trustfall makes cargo-semver-checks possible

Focus on linting & ergonomics, not rustdoc JSON format changes

● 58 lints and growing — twice as many as a year ago

● 32 contributors and growing — many new lints are first-time contributions!

● Our users love us!

Trustfall makes cargo-semver-checks possible

Focus on linting & ergonomics, not rustdoc JSON format changes

● 58 lints and growing — twice as many as a year ago

● 32 contributors and growing — many new lints are first-time contributions!

● Our users love us!

Trustfall makes cargo-semver-checks possible

Focus on linting & ergonomics, not rustdoc JSON format changes

● 58 lints and growing — twice as many as a year ago

● 32 contributors and growing — many new lints are first-time contributions!

● Our users love us!

Trustfall makes cargo-semver-checks possible

Focus on linting & ergonomics, not rustdoc JSON format changes

● 58 lints and growing — twice as many as a year ago

● 32 contributors and growing — many new lints are first-time contributions!

● Our users love us!

https://github.com/libp2p/rust-libp2p/pull/3073#issuecomment-1299582893

https://github.com/libp2p/rust-libp2p/pull/3073#issuecomment-1299582893

Toward fearless “cargo update”

SemVer is valuable, but impossible without automated help.

cargo-semver-checks is a solution with lots of happy users.

PredragGruevski obi1kenobihttps://predr.ag/ @predrag@hachyderm.io

Toward fearless “cargo update”

SemVer is valuable, but impossible without automated help.

cargo-semver-checks is a solution with lots of happy users.

How you can help:

● Contribute code and lints to cargo-semver-checks

● Sponsor its development: https://github.com/sponsors/obi1kenobi

● Use cargo-semver-checks when others depend on your packages

PredragGruevski obi1kenobihttps://predr.ag/ @predrag@hachyderm.io

https://github.com/sponsors/obi1kenobi

Toward fearless “cargo update”

SemVer is valuable, but impossible without automated help.

cargo-semver-checks is a solution with lots of happy users.

How you can help:

● Contribute code and lints to cargo-semver-checks

● Sponsor its development: https://github.com/sponsors/obi1kenobi

● Use cargo-semver-checks when others depend on your packages

PredragGruevski obi1kenobihttps://predr.ag/ @predrag@hachyderm.io

https://github.com/sponsors/obi1kenobi

Toward fearless “cargo update”

SemVer is valuable, but impossible without automated help.

cargo-semver-checks is a solution with lots of happy users.

How you can help:

● Contribute code and lints to cargo-semver-checks

● Sponsor its development: https://github.com/sponsors/obi1kenobi

● Use cargo-semver-checks when others depend on your packages

PredragGruevski obi1kenobihttps://predr.ag/ @predrag@hachyderm.io

https://github.com/sponsors/obi1kenobi

