
The JVM vs 
WebAssembly
An In-Depth Comparative Analysis



Why did we create 
WebAssembly when we 

already have the JVM



What are the differences 
between the JVM and the 

WebAssembly VM?



Github:
Linkedin:

Twitter:

Shivansh Vij
Founder, Loophole Labs

https://github.com/shivanshvij
https://linkedin.com/in/shivanshvij

@ConfusedQubit

https://github.com/shivanshvij
https://linkedin.com/in/shivanshvij


https://scale.shScale:
https://loopholelabs.io/discordDiscord:

https://loopholelabs.ioHomepage:
@LoopholeLabsTwitter:

https://scale.sh
https://loopholelabs.io/discord
https://loopholelabs.io


A Brief History Lesson

Big Bang WebAssemblyJVM

? ?



In the Beginning, there was the Big Bang

• All software is presented to the CPU as machine code 

• Readability is extremely low (not practical to write) 

• Assign easy to remember “names” to each machine 

code operation 

• ADD X Y Z = Add Y and Z, Save into X 

• Create an “assembler” to parse these instructions and 

“assemble” them into native machine code 

Machine Code

Machine Code 
 

01010100 01101000 01101001 
01110011 00100000 01101001 
01110011 01101110 00100111 

01110100 00100000 01100001 
01100011 01110100 01110101 
01100001 01101100 01101100 
01111001 00100000 01001101 
01100001 01100011 01101000 
01101001 01101110 01100101 
00100000 01000011 01101111 

01100100 01100101

Assembly 

 

MOV 

MOV 

ADD 

END

R0  #10 

R1  #3 

R0  R0  R1 



All Our Problems are 
Solved, Right?



Different Processors 
= 

Different Assembly 
Languages



One CPU To Rule Them All

• What if there was a “Virtual CPU” that had its 

own dialect of machine code? 

• Software could target the Virtual CPU’s 

machine code 

• Translate the vCPU’s machine code to the 

unique machine code for various CPUs 

• Software supports only the virtual layer, which is 

responsible for supporting real CPUs

Virtual Machine Code 
 

01010100 01101000 01101001 
01110011 00100000 01101001 
01110011 01101110 00100111 

01110100 00100000 01100001 
01100011 01110100

Virtual Assembly 

 

MOV 

MOV 

ADD 

END

R0  #10 

R1  #3 

R0  R0  R1 

CPU-Specific Machine Code 
 

01010100 01101000 01101001 
01110011 00100000 01101001 
01110011 01101110 00100111 

01110100 00100000 01100001 
01100011 01110100



A Stack-Based Approach to Bytecode

• JVM’s Virtual CPU needs a bytecode format  

• It needs to be CPU-agnostic  

• We can’t use registers because CPUs often 

have unique registers 

• A “Stack-Based” Virtual Machine 

• Store values on stack, pop them off to 

“consume” them 

• Will run on any CPU that supports stacks

Register Assembly 

MOV 

MOV 

ADD 

END

R0  #10 

R1  #3 

R0  R0  R1 

Stack Assembly 

PUSH 

PUSH 

ADD 

END

#10 

#3 

vs



The “JVM” is Born!
Java



A (Brief?) History Lesson

Machine Code WebAssemblyJVM

CPU-Specific 
Assembly

?



Now Let’s Take It To the 
Browser



Why not use the JVM in the 
Browser?



JavaScript wasn’t Fast 
Enough



function Example(stdlib, foreign, heap) {
  "use asm";
  var exp = stdlib.Math.exp;
  var log = stdlib.Math.log;
  var values = new stdlib.Float64Array(heap);
  function logSum(start, end) {
    start = start|0;
    end = end|0;
    var sum = 0.0, p = 0, q = 0;
    for (p = start << 3, q = end << 3; (p|0) < (q|0); p = (p + 8)|0) {
      sum = sum + +log(values[p>>3]);
    }
    return +sum;
  }
}



A Brief History Lesson

Machine Code WebAssemblyJVM

CPU-Specific 
Assembly

asm.js



A New Build Target

• Similar to x86, languages can be “compiled” for WebAssembly 

• Browsers will ship with a Wasm VM that can run the compiled 

bytecode 

• Key Requirements for the bytecode 

• Near-native performance 

• Streamable 

• Stack-Based (with “structured control flow”) 

• Sandboxing by default (with extensibility)



WebAssembly Bytecode Format

• Represented as an Abstract Syntax Tree (AST) 

• Can be encoded/decoded very efficiently 

• Load/instantiate on-the-fly as it’s streamed in 

• Language Agnostic 

• Easier for AOT/JIT compilers to optimize ASTs 

• Validation and Verification 

• Structured Control Flow 

• Future Flexibility 



Structured Control Flow

• JVM has unstructured control flow 

• Java needs to load Java classes and verify them at startup 

• Instructions like “goto” and “ifeq” need to be validated 

• Utilizes Stack Maps to achieve this in a single pass 

• Required because the bytecode format cannot be modified 

• WebAssembly control flow requires structured constructs 

• “if, “then", and “else” 

• Blocks and loops



void print(boolean x) { 
    if (x) { 
        System.out.println(1); 
    } else { 
        System.out.println(0); 
    } 
} 



 void print(boolean); 
 Code: 
 0: iload_1 
 1: ifeq 14 
 4: getstatic #7 // java/lang/System.out:Ljava/io/PrintStream 
 7: iconst_1 
 8: invokevirtual #13 // java/io/PrintStream.println 
11: goto 21 
14: getstatic #7 // java/lang/System.out:Ljava/io/PrintStream 
17: iconst_0 
18: invokevirtual #13 // java/io/PrintStream.println 
21: return 



(module 
 ;; import the browser console object,  
 ;; you'll need to pass this in from JavaScript 
 (import "console" "log" (func $log (param i32))) 

 (func 
   ;; change to positive number (true)  
   ;; if you want to run the if block 
   (i32.const 0)  
   (call 0) 
 ) 

 (func (param i32) 
   local.get 0  
   (if 
     (then 
       i32.const 1 
       call $log ;; should log '1' 
     ) 
     (else 
       i32.const 0 
       call $log ;; should log '0' 
     ) 
   ) 
 ) 

 (start 1) ;; run the first function automatically 
) 



Do More by Doing Less

• The JVM footprint makes it problematic in the browser 

• It provides many capabilities (in an opinionated way) 

• What does WebAssembly VM do differently? 

• Has no opinions 

• Provides the bare minimum 

• No garbage collector 

• No standard library  

• Few Types (i32, i64, f32, f64 - no strings) 

• Easy and safe to extend



Small But Mighty

• Fast starts (microsecond range) 

• Extremely small memory footprint (few kilobytes) 

• Fast cleanups (recover the linear memory chunk) 

• Ideal for environments like the browser 

• But also interesting on the server-side 

• Opens the door to polyglot programming 

• A true “universal compilation target” 



https://scale.shScale:
https://loopholelabs.io/discordDiscord:

https://loopholelabs.ioHomepage:
@LoopholeLabsTwitter:

https://scale.sh
https://loopholelabs.io/discord
https://loopholelabs.io

