
Alexander Timin (altimin@chromium.org)
FOSDEM 2024

(self-link)

Understanding how a web browser works
or tracing your way out of (performance) problems

mailto:altimin@chromium.org


What is this talk actually about?

● Hi, I’m Alex
○ Software engineer in Google’s Web-on-Android Performance team for the last 8+ years

● Problem solving in complex systems with illustrations
○ Chromium (chromium.org)
○ Perfetto (perfetto.dev)

● Not a how-to guide, but hopefully source of inspiration
○ For actually practically useful stuff, see this “intro to Chrome tracing” article
○ Would love to hear and chat more about similar problems

https://www.google.com/url?sa=j&url=https%3A%2F%2Fcalendar.perfplanet.com%2F2023%2Fdigging-chrome-traces-introduction-example%2F&uct=1680477799&usg=tz_oPqViYsKG2YghctBJ9rHxZvk.&opi=73833047&source=chat


So, you want to improve performance

● Knowing what to improve is often most of the effort
● Performance problems can be anywhere in the code
● Modern web is complex (API surface / browser implementation / various 

sites)

⇒ … then you’ll be spending considerable effort understanding new 
code on a recurring basis



How can do it?

● Read the code
○ Good luck!

● fprintf
○ console.log, (V)LOG, etc.

● debugger
○ gdb, lldb, rr, Chrome DevTools

● These approaches don’t scale effectively to complex environments
○ Especially when multiple threads/processes are involved
○ Indeterminism (flaky tests)
○ Typically focusing on low-level details, not insights into high-level architecture



Enter tracing

Structured logging with visualisation:

● Turning this:

● Into this:



Enter tracing

Visualisation of what multiple threads / processes do in parallel



● ui.perfetto.dev + “Open Chrome example”

If you want to try it yourself



● Starting point: instrumenting the code you are working on
○ Flexible and powerful, but not most convenient
○ Folks want to solve the problem, not add instrumentation

■ a single fprintf is more convenient
■ debuggers are guaranteed to have all information

● Unrealistic to have all functions instrumented
○ Too much data and overhead: slow to record and analyse

● Finding opportunities for scaling the usefulness
○ Few instrumentation points which give multiple insights
○ Usually infra / foundational pieces

But how to make it useful?



● Event loop model: 
○ Thread schedulers for “named” threads
○ Thread pool for “background” work

● Various places in the codebase post tasks:

● Great chokepoint for tracing instrumentation
○ A couple of paths ~all work in Chromium is going through
○ Can get basic info which part of the codebase a given task is coming from

Chromium task scheduler



Chromium task scheduler: a single task

A single task (RunTask): FROM_HERE provides basic info about the task



Chromium task scheduler: macro-level

Overview of all thread activity
RunTask trace events: cross-task dependencies are very powerful



Beyond task scheduler
● FROM_HERE might be useful

○ And might be not

● Other “chokepoints”
○ IPC system (mojo): cross-process communication
○ console.log & (D)(V)LOG
○ blink bindings (JS => C++ boundary): which JS calls are being made
○ JNI: Java => C++ boundary
○ GPU scheduler
○ Blink dispatched events
○ locks and other //base primitives



What’s next?
Status quo:

● Good: we have visibility into ~everything Chromium is doing

● Bad: it’s mostly low-level details and slow to work with

● Ugly: expertise-intensive

Aspiration: 

● One can open a trace and learn something about how Chromium works

● (instead of requiring MS in tracing and PhD in Chromium architecture)



Inspiration

Architecture diagram from a Life of a Navigation talk from Chromium University

https://docs.google.com/presentation/d/1YVqDmbXI0cllpfXD7TuewiexDNZYfwk6fRdmoXJbBlM/edit#slide=id.g1e2898b37b_0_130


… and the status quo

The information is there, but the same insights will take a bit longer to get
(trace)

https://drive.google.com/file/d/1Uj0PxPDjnsSVOq9OQBRKmugUNDXzCE2e/view?usp=drive_link


● EventLatency: breakdown of processing an input event and generating a 

frame

● Currently requires plumbing all of the data to a single location
○ Plumbing is very expensive in a large project (e.g. layering concerns, serialisation cost)

○ Difficult to scale

Existing examples



Enter Perfetto
● From chrome://tracing to perfetto.dev

● New UI, new more efficient format

● SQL data mode and query engine
○ Running custom queries from the UI

○ Running trace processor + SQLite in the browser via WASM

● Allows separation of “recording” and “analysis"

http://perfetto.dev
https://ui.perfetto.dev/


Enter “:” into the search box to enter the SQL mode
Query: select thread_name, process_name, dur / 1e6 as dur_ms, printf('%s:%s', extract_arg(arg_set_id, 'task.posted_from.file_name'), extract_arg(arg_set_id, 'task.posted_from.file_name')) as posted_from from thread_slice where name = 

'ThreadControllerImpl::RunTask' ORDER BY dur desc limit 100

Perfetto powers



Next steps
● Trying to build navigation instrumentation in Chromium as PoC

○ Focusing on the higher-level concepts

○ Links to the lower-level implementation details (e.g. specific functions being called)

○ Inline documentation in the UI and explaining the concepts 

● Challenge: complexity and # of corner cases
○ ~50+ of various cases which affect the breakdown

○ Automatic testing is a prerequisite

Current status of the prototype:



Bonus: Chrome DevTools 
and the importance of presenting the right information

Screenshot of a network section of a performance trace from Chrome DevTools 
(trace)

https://drive.google.com/file/d/1gTttIJmSEYmwZhnaOpDounq41UDLgaAo/view?usp=drive_link


Bonus: Chrome DevTools 
and the importance of presenting the right information

It’s just Chrome traces with post-processing in DevTools frontend

You can open the same trace in chrome://tracing / Perfetto, but it will be less useful


