
Staying Ahead of the Game
JavaScript Security

/ @dheerajhere

https://twitter.com/dheerajhere

 Senior Frontend Engineer @ GitLab

 Ambidextrous TT Player

 I like to find Security bugs for fun and swags

About Me

🏓

This makes me happy!

Uber, Symantec, CKEditor, Dropbox,
Jenkins, MailChimp, Recruiterbox,
InVision, Intuit, etc.

https://hackerone.com/reports/126049
https://www.symantec.com/connect/pages/security-researcher-wall-fame
http://ckeditor.com/blog/CKEditor-4.4.8-Released
https://twitter.com/dheerajhere/status/514665350546202624
https://jenkins.io/security/advisory/2017-08-07/
http://mailchimp.com/about/security-response/
https://medium.com/@dheerajhere/hiring-made-so-easy-security-write-up-c717a152c21c
https://hackernoon.com/mocking-the-mockups-invision-xss-5048617ba4de
https://security.intuit.com/acknowledgements.html

Agenda

‣ Why?

‣ Understanding XSS

‣ What’s CSP?

‣ Demo

‣ Initiatives at GitLab

‣ Best Practices

‣ Q&A

Security is important!

Why should we care
about frontend
Security?

One of the things we assume is that
Security is only on the Backend.

Story Time!

NEARLY 2000 WORDPRESS WEBSITES INFECTED WITH A
KEYLOGGER

ChatGPT

Let’s talk XSS!

">

WHEN DATA BECOMES CODE

CROSS SITE SCRIPTING (XSS)

CROSS SITE SCRIPTING (XSS)

● It’s more than the alert popup

● XSS attack users

● Hijack, Steal, Record

Typical Reflected XSS

DOM XSS

Mitigations...

● Analyze places where DOM elements are created

● Avoid innerHTML and similar functions

● Add a linter rule to prevent its usage

● Input sanitization

● Output Encoding

Enable Secure, HTTPOnly flag for sensitive cookies

Demo

● Never trust user input

● Avoid using dangerouslySetInnerHTML, v-html

● Sanitize input, escape output

● Build secure links

● Add eslint to prevent improper usages

Rule of Thumb

Content Security Policy (CSP)

● Mitigating Cross-site Scripting Attacks

● Secure Form Submission

● HTTPS

● Mitigating Clickjacking

Content Security Policy

Clickjacking Attack

Other HTTP Security headers

● X-Frame-Options: deny

● Strict-Transport-Security:

max-age=16070400; includeSubDomains

● X-XSS-Protection: 1; mode=block

● X-Content-Type-Options: nosniff

Securing GitLab’s Frontend

Everything at GitLab starts with an issue

Everything at GitLab starts with an
issue

https://gitlab.com/gitlab-org/gitlab/-/issues/219124

https://gitlab.com/gitlab-org/gitlab/-/issues/219124

Secure by default

As we know, v-html is bad

➔ We built v-safe-html

https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/directives-safe-html-directive--default

https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/directives-safe-html-directive--default

Secure by default

We also made our Link component safe-by-default

https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/base-link--default-link

‣ We use a third-party
module to generate charts!

‣ It has caused numerous
XSSes in the past and
$$$$!

‣ We implemented
sandboxing and fixed all the
issues with one single
change.

https://gitlab.com/gitlab-org/gi
tlab/-/merge_requests/74414

Iframe Sandboxing

Issues increase

Multiple defenses were
added

Issues drop significantly

Frontend Security Issues

How to improve?

● Shift Left - Integrate into SDLC

● Adopt Secure-by-Design principles

● Use Security Middleware like Helmet.js

● Use standard Sanitizers like DOMPurify

● Snyk, Npm audit

Learning Resources

1. Stanford - CS 253 Web Security Course

2. OWASP Developer Guidelines

3. Hacker101

4. Play CTFs

5. GitLab’s Secure Coding Guidelines

Thank you
https://web.stanford.edu/class/cs25
3/

/ @dheerajhere

🙇

https://twitter.com/dheerajhere

