Staying Ahead of the Game

JavaScript Security
P
O

W @dheerajhere

https://twitter.com/dheerajhere

About Me

& Senior Frontend Engineer @ GitLab

¥ Ambidextrous TT Player

ﬁ | like to find Security bugs for fun and swags

This makes me happy!

Dheeraj Joshi

Uber, Symantec, CKEditor, Dropbox,
Jenkins, MailChimp, Recruiterbox,
InVision, Intuit, etc.

tuit Security team #hof #infosec
emen...

Dheeraj Joshi
Thank you € for adding extra space. Feels great. #Whi

Thanks « y for lifetime Pro Upgrade. Lots of Cool features to explore!
#infosec #V al

Dheeraj Joshi
Got one month free @ ool subscription for finding a security vulnerability
#infosec

E Dheeraj Joshi

” JavaScript Alert
[XSS

https://hackerone.com/reports/126049
https://www.symantec.com/connect/pages/security-researcher-wall-fame
http://ckeditor.com/blog/CKEditor-4.4.8-Released
https://twitter.com/dheerajhere/status/514665350546202624
https://jenkins.io/security/advisory/2017-08-07/
http://mailchimp.com/about/security-response/
https://medium.com/@dheerajhere/hiring-made-so-easy-security-write-up-c717a152c21c
https://hackernoon.com/mocking-the-mockups-invision-xss-5048617ba4de
https://security.intuit.com/acknowledgements.html

» Why?

» Understanding XSS
» What's CSP?

» Demo

» Initiatives at GitLab
» Best Practices

» QRA

Agenda

Security is important!

There are two types of

companies: those'who
have been hacked, and
those who don’t yet know
they have been hacked.

John Chambers
Chief Executive Officer of Cisco

Why should we care
about frontend
Security?

One of the things we assume is that
Security is only on the Backend.

Story Time!

Home About I R\ RSS

Stealing passwords from Mc¢Donald's users

Reflected XSS through AngularJS sandbox bypass causes
password exposure of McDonald users.

By abusing an insecure cryptographic storage vulnerability (link) and a reflected server cross-site-scripting vulnerability (link) it is
possible to steal and decrypt the password from a McDonald's user. Besides that, other personal details like the user's name, address &

contact details can be stolen too

Proof of Concept

Reflected XSS through AngularJS sandbox escape

McDonalds.com contains a search page which reflects the value of the search parameter (q) in the source of the page. So when we

search on for example ****xxxx s x» -test-reflected-test , the response will look like this

NEARLY 2000 WORDPRESS WEBSITES INFECTED WITH A
KEYLOGGER

Markdown Preview Security Risk aF

C h a tG PT ! Can you preview the following Markdown?

TEST
[CLICK](javascript:alert(document.domain))

Sure, here's a preview of the Markdown you provided:

less E] Copy code

TEST

1(javascript:alert(document.domain))

And here's how it will look like when rendered:

te that the ~ javascript:* code in the link could potentially execute arbitrary

code in tRe user's browser and is considered a security risk. Many web browsers will

prevent th§ execution of such code, or even block the link altogether, to protect the

user's secur

javascript:alert(document.domain)

Let's talk XSS!

CROSS SITE SCRIPTING (XSS)

WHEN DATA BECOMES CODE

">< SrC=X Onerror=

= prompi

Are you sure you want to permanently delete ">le.?

CROSS SITE SCRIPTING (XSS)

e It's more than the alert popup
e XSS attack users

e Hijack, Steal, Record

Typical Reflected XSS

2. User clicks the link 3. Browser sends the
and it is executed in private data to the
the browser attacker

1. Attacker sends ATTACKER
malicious link

DOM XSS

<html>
P,
Dashboard for
<script>
const pos = document.URL.index0f("name=") + 5;

const name = decodeURIComponent(document.URL.substring(pos));
document.write(name);

</script>
(::a)
</html>

Mitigations...

Analyze places where DOM elements are created
Avoid innerHTML and similar functions

Add a linter rule to prevent its usage

Input sanitization

Output Encoding

Enable Secure, HTTPOnly flag for sensitive cookies

app.use("/cookies", (req, res) => {
const dataToSecure = {
dataToSecure: "This is the secret data in the cookie.",

X

res.cookie("secureCookie", JSON.stringify(dataToSecure), {
— secure: process.env.NODE_ENV !== "development",
—» httpOnly: true,
expires: dayjs().add(30, "days").toDate(),
};

res.send("Hello.");

});

| o
it o
'I" o !

Cc A\ Not Secure fosdem.local:3000/search

Js
Definitely Secure Site

Search something...

This page is vulnerable to XSS attacks

W

® O

o0

<« C A NotSecure fosdem.local:3000/search?g=hello ifr I A ¢)

JS
Definitely Secure Site

hello

Unfortunately, no results were found for hello

This page is vulnerable to XSS attacks

< c A\ Not Secure fosdem.local:3000/search?q=<u>hello<%2Fu> b g) | 9

JS
Definitely Secure Site

<u>hello</u>

Unfortunately, no results were found for hello

This page is vulnerable to XSS attacks

< C A NotSecure fosdem.local:3000/search hx ¢ 3 [} | 9

JS
Definitely Secure Site

<img src=x onerror=prompt(document.domain)

This page is vulnerable to XSS attacks

< C A\ Not Secure fosdem.local:3000/search?q=<img%20src%3Dx%20onerror%3Dprompt(document.domain)> h* ¢ o3 | Q

fosdem.local:3000 says

fosdem.local

()

LTIINIITIYy OTUUIT OIlT

Unfortunately, no results were found for

This page is vulnerable to XSS attacks

€ (¢ A\ Not Secure fosdem.local:3000/search?q=<img%20src%3Dx%20onerror%3Dalert(JSON.stringify(localStorage))> Y D } | 9

fosdem.local:3000 says

{"secret":"12345"}

Jo

Definitely Secure Site

Unfortunately, no results were found for |,

This page is vulnerable to XSS attacks

<p>
Unfortunately, no results were found for{' '}
.
</p>
000
<p>

Unfortunately, no results were found for{' '}
{query }
</p>

@ Rule of Thumb v

e Never trust userinput

e Avoid using dangerouslySetinnerHTML, v-html
e Sanitize input, escape output

e Build secure links

e Add eslint to prevent improper usages

Content Security Policy (CSP)

S OO Developer Tools - http://127.0.0.1:8000/csp.html

2 e @ e & . <

Elements Resources Network Sources Timeline

Q O <topframe> 5 <page context>

Content Security Policy

Mitigating Cross-site Scripting Attacks
Secure Form Submission

HTTPS

Mitigating Clickjacking

Clickjacking Attack

‘eee eEEEEESSsss————— *

Cute Puppy Video

Other HTTP Security headers

X-Frame-Options: deny
Strict-Transport-Security:
max-age=16070400; includeSubDomains
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff

o

Securing GitLab's Frontend

Everything at GitLab starts with an issue

org ¥ GitLab #219124

@ open [Issue created 2 years ago by %) Dheeraj Joshi D r Close issue

Improve Frontend Security Posture

This issue should list down all the possible areas where we can make improvement to strengthen our Frontend Security.
Mitigating Cross-site Scripting (XSS)

Update Sanitizer

1. Swap sanitize-html for dompurify (more robust) - 131928 (merged), gitlab-ui!1636 (merged)

Avoid v-html
Since we know, v-html is bad

1. Add v-safe-html directive which sanitizes html by default - gitlab-ui!1413 (merged)
2. Add ESLint rules to prevent using v—html - #232488 (closed)
3. Audit and remove existing v—-html usages - &4273 (closed)

Prevent URL injection

1. Add safe-1link directive to prevent url injection - Documentation, gitlab-ui!1457 (merged)
2. GlLink component should prevent JS execution by default - gitlab-ui!1472 (merged)
3. GlButton component should prevent JS execution by default - gitlab-ui#1379 (closed)

Development guidelines

1. Frontend Security Best Practices - https://docs.gitlab.com/ee/development/secure_coding_guidelines.html#xss-guidelines

https://qitlab.com/qitlab-org/qitlab/-/issues/219124

https://gitlab.com/gitlab-org/gitlab/-/issues/219124

Secure by default

As we know, v-html is bad

-> We built v-safe-html

Directive Output

v-html Hello <script>alert(document.domain)</script>world!

v-safe-html Hello world!

https://qitlab-orqg.qitlab.io/qitlab-ui/? path=/story/directives-safe-html-directive--default

https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/directives-safe-html-directive--default

Secure by default

We also made our Link component safe-by-default

<gl-1link href="javascript:alert(1)">click me</gl-1link>

J

click me

https://gitlab-org.qgitlab.io/gitlab-ui/?path=/story/base-link--default-link

Iframe Sandboxing

& GitLab.org @ GitLab > Merge requests > 174414

» We use a third-party o , _
Render GFM Mermaid diagrams in a sandboxed iframe
mOdU|e tO generate Cha rtS! %o Merged Dheeraj Joshi requested to merge djadmin-sandbox-mermaid (7 into master 1year ago

Overview 139 Commits 6 Pipelines 24 Changes 16

4 |t h as cau Sed numerous Related issues: #342208 (closed), #345592 (closed)
XSSeS in the past and What does this MR do and why?

$ $ $$ | This MR moves rendering of mermaid diagrams in GFM within a sandboxed environment by using iframe's sandbox attribute. This should
¢ help in minimizing the impact from XSS vulnerabilities caused by Mermaid, and possibly with other 3rd party libraries in the future.

Details:

N o l d 1. Each mermaid diagram is rendered in a separate iframe (https://<gitlab-instance>/-/sandbox/mermaid)
We I m p e m e n te 2. The iframe gets loaded in a cross-origin sandboxed environment

3. The iframe gets the diagram source via postMessage once it's loaded

Sa n d bOXI n g a n d leed a ll th e 4. The iframe draws the diagram and sends a postMessage to parent window communicated the rendered diagram size

5. Parent window receives the postMessage and adjusts the iframe size.

Issues Wlth One Slngle 6. Act natural and say goodbye to Found a new mermaid XSS vulnerability emails

Ch a n g e . Note: The changes are behind a new (feature flag = sandboxed_mermaid .

Screenshots or screen recordings

httpS//g|t|abCom/gmab_org/gl » how a blocked XSS attack looks like
tlab/-/merge_requests/74414 i

Frontend Security Issues

Multiple defenses were
added

Issues increase Issues drop significantly

How to improve?

Shift Left - Integrate into SDLC

Adopt Secure-by-Design principles

Use Security Middleware like Helmet.js
Use standard Sanitizers like DOMPurify
Snyk, Npm audit

A o

Learning Resources

. Stanford - CS 253 Web Security Course

OWASP Developer Guidelines
Hacker101

Play CTFs

GitLab's Secure Coding Guidelines

Thank you

(A 2

W @dheerajhere

https://twitter.com/dheerajhere

