
GDB on Windows
status & plans

Pedro Alves

Agenda

• Windows debug API particularities

• Non-stop mode, and how we're planning on implementing it on Windows

• Ctrl-C handling and what is different on Windows

• The GDB testsuite, why nobody is running it on native Windows, and what
can we do about it.

• PDB (Portable Database), Microsoft's debug info format

• More

Windows debug API core

BOOL WaitForDebugEvent(

[out] DEBUG_EVENT *lpDebugEvent,

[in] DWORD dwMilliseconds

);

BOOL ContinueDebugEvent(

[in] DWORD dwProcessId,

[in] DWORD dwThreadId,

[in] DWORD dwContinueStatus

);

DWORD SuspendThread(

 [in] HANDLE hThread

);

DWORD ResumeThread(

 [in] HANDLE hThread

);

Windows debug API, WaitForDebugEvent

BOOL WaitForDebugEvent(

 [out] DEBUG_EVENT *lpDebugEvent,

 [in] DWORD dwMilliseconds // 0 - return immediately; INFINITE - wait forever

);

• Note: not asynchronous.

• To avoid blocking must either:

o periodically poll, or,

o call from separate thread. <<< what GDB does.

• Must be called from the thread that attached or spawned the inferior.

o Must make most debug API calls from that separate thread. << what GDB does.

Windows debug API, ContinueDebugEvent

BOOL ContinueDebugEvent(

 [in] DWORD dwProcessId,

 [in] DWORD dwThreadId,

 [in] DWORD dwContinueStatus

);

Where dwContinueStatus can be:

• DBG_CONTINUE

o If the thread previously reported EXCEPTION_DEBUG_EVENT, stop all exception processing, the exception is
marked as handled.

• DBG_EXCEPTION_NOT_HANDLED

o If the thread previously reported EXCEPTION_DEBUG_EVENT, continue exception processing. If this is a first-
chance exception event, the search and dispatch logic of the structured exception handler is used; otherwise, the
process is terminated.

Async mode

o GDB's event loop reacts to multiple event sources at the same time

o target events + user input

o Background execution commands:

o Most importantly
▪ => let GUIs/IDEs communicate with GDB while inferior is running

(read memory, set breakpoints, symbol queries, etc., etc.)

...
(gdb) c&
Continuing.
(gdb)

All-stop mode

 T1 T2 T3 T4 T5

1. [R] [R] [R] [R] [R] <<< all threads running free, T3 about to hit exception

2. [k] [k] [E] [k] [k] <<< T3 hit exception, kernel pauses whole process

3. ... <<< user inspects T3, backtrace, prints variables, etc.

4. [k] [k] [E] [k] [k] <<< user resumes, GDB issues ContinueDebugEvent(T3, DBG_CONTINUE or

 DBG_EXCEPTION_NOT_HANDLED)

6. [R] [R] [R] [R] [R] <<< all threads running free again

R - runnable (suspend count == 0) E – exception event, suspended by kernel

k - suspended by kernel S - suspended by GDB (suspend count == 1)

All-stop mode + "set scheduler-locking on"

 T1 T2 T3 T4 T5

1. [R] [R] [R] [R] [R] <<< all threads running free, T3 about to hit exception

2. [k] [k] [E] [k] [k] <<< T3 hit exception, kernel pauses whole process

3. ... <<< user inspects T3, backtrace, prints variables, etc.

4. [k] [S] [S] [S] [S] <<< user decides to resume only thread T1, suppress exception,

 GDB uses SuspendThread to freeze threads T2-T5, and is

 about to issue ContinueDebugEvent(T3, DBG_CONTINUE)

5. [R] [S] [S] [S] [S] <<< T1 running free again, others suspended

R - runnable (suspend count == 0) E – exception event, suspended by kernel

k - suspended by kernel S - suspended by GDB (suspend count == 1)

Non-stop mode

o only the thread that hits breakpoint/event reports stop to user

o other threads keep running

o only supported on GNU/Linux, and remote targets (some embedded systems)

...
Thread 6 "pthreads" hit Breakpoint 3, thread2 (arg=0xdeadbeef)

at gdb.threads/pthreads.c:90
90 k += i;
(gdb) info threads
 Id Target Id Frame
* 1 Thread 4980.0x17b8 "pthreads" (running)
 2 Thread 4980.0x664 (running)
 3 Thread 4980.0xa50 (running)
 4 Thread 4980.0x154 "sig" (running)
 5 Thread 4980.0x91c "pthreads" (running)
 6 Thread 4980.0xad8 "pthreads" thread2 (arg=0xdeadbeef)

at gdb.threads/pthreads.c:90
(gdb)

Non-stop mode plans

Non-stop mode problem on Windows:

 WaitForDebugEvent returns an event => kernel suspends the whole process (all its threads)

 Conflict: non-stop wants to leave all other threads running!

Easy, immediately SuspendThread the event thread (not others), and call ContinueForDebugEvent, right?

 … not so fast!

The user hasn't decided yet whether to pass the exception to the inferior or not!

Non-stop mode plans, Win10 to the rescue

BOOL ContinueDebugEvent(

 [in] DWORD dwProcessId,

 [in] DWORD dwThreadId,

 [in] DWORD dwContinueStatus

);

Where dwContinueStatus can now also be:

• DBG_REPLY_LATER

o "Supported in Windows 10, version 1507 or above, this flag causes dwThreadId to replay the existing breaking
event after the target continues. By calling the SuspendThread API against dwThreadId, a debugger can resume
other threads in the process and later return to the breaking."

https://learn.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-suspendthread

Non-stop, sequence of events

 T1 T2 T3 T4 T5

1. [R] [R] [R] [R] [R] <<< all threads running free, T3 about to raise exception

2. [k] [k] [E] [k] [k] <<< T3 raises exception, kernel pauses whole process

3. [k] [k] [S] [k] [k] <<< GDB suspends T3 (SuspendThread => suspend count == 1)

4. [R] [R] [S] [R] [R] <<< GDB issues ContinueDebugEvent(T3, DBG_REPLY_LATER),

 remembers event will be repeated

5. ... <<< user inspects T3, backtrace, prints variables, etc.

6. [R] [R] [R] [R] [R] <<< user resumes T3, GDB unsuspends T3 (ResumeThread => suspend count == 0)

7. [k] [k] [E] [k] [k] <<< T3 immediately re-reports exception, kernel pauses whole process

8. [R] [R] [R] [R] [R] <<< GDB issues ContinueDebugEvent(T3, DBG_CONTINUE or

DBG_EXCEPTION_NOT_HANDLED)

R - runnable (suspend count == 0) E – exception event, suspended by kernel

k - suspended by kernel S - suspended by GDB (suspend count == 1)

T

I

M

E

Non-stop, multiple events works too

 T1 T2 T3 T4 T5

1. [R] [R] [R] [R] [R] <<< all threads running free, T3 about to raise exception

2. [k] [k] [E] [k] [k] <<< T3 raises exception, kernel pauses whole process

3. [k] [k] [S] [k] [k] <<< GDB suspends T3 (SuspendThread => suspend count == 1)

4. [R] [R] [S] [R] [R] <<< GDB issues ContinueDebugEvent(T3, DBG_REPLY_LATER),

 remembers event will be repeated

6. [E] [k] [S] [k] [k] <<< T1 raises exception, kernel pauses whole process

7. [S] [k] [S] [k] [k] <<< GDB suspends T1 (SuspendThread => suspend count == 1)

8. [S] [R] [S] [R] [R] <<< GDB issues ContinueDebugEvent(T1, DBG_REPLY_LATER),

 remembers event will be repeated

9. [S] [R] [R] [R] [R] <<< user resumes T3, GDB unsuspends T3 (ResumeThread => suspend count == 0)

A. [S] [k] [E] [k] [k] <<< T3 immediately re-reports exception, kernel pauses whole process

B. [S] [R] [R] [R] [R] <<< GDB issues ContinueDebugEvent(T3, DBG_CONTINUE or

 DBG_EXCEPTION_NOT_HANDLED)

Non-stop mode plans, there's more to it

There's more to it, but no time to go through it all today.

• Cygwin signal handling details

• Watchpoints support details

• SuspendThread accounting messy details

• Passing signal to right thread details

• $_siginfo per thread

Also, we have a few downstream Cygwin GDB patches, some of which we need to upstream:

• Unwind cygwin _sigbe and sigdelayed frames

• Drop special way of getting inferior context after a Cygwin signal

• Use cygwin pgid if inferior is a cygwin process

• Others...

GDB on Windows, two ports

Cygwin

- Cygwin is: "a DLL (cygwin1.dll) which provides substantial POSIX API functionality."

- You rebuild your application from source.

- Application aware of UNIX® functionality like signals, ptys, etc.

- C runtime / headers based on newlib.

MinGW [1]

- Port of GCC compiler to Windows systems, and other tools (binutils, .def and .idl files, etc.)

- Windows API Headers, C runtime headers, everything needed for linking and running code on Windows

- C runtime / headers based on MSVCRT.

The Cygwin GDB port uses posix signals, ptys, select/poll event loop, etc.

The MinGW GDB port uses WaitForMultipleObject event loop, etc.

Both ports share the backend code that talks to the Windows debug API (gdb/windows-nat.c)

 [1] - there are two MinGW projects, but we can ignore that fact here

GDB testsuite

• Built on DejaGnu => Built on expect => Built on TCL

• DejaGnu assumes Unix-like environment:
o Posix shell and utilities, "kill", "cp", "mv", etc.

o There is no Windows native expect port

• Testing a Cygwin GDB on a Cygwin environment works
o Slow & not super stable, but works

o But, not the same as native MinGW GDB

• MinGW GDB under Cygwin/Msys2
o Windows GDB running under Cygwin expect sees input/output connected to a pipe, not an interactive pty

=> GDB disables interactive/readline mode

o Terminal mode handling => CodeSourcery's cygwin-wrapper tool could help here?

o Path mapping issues (what GDB sees != what testcases see)

• GDB's multi-threading tests use pthreads
o Native Windows doesn't have that => MinGW-w64 has them w/ winpthreads, though

• Ideas?
o Run DejaGnu on Cygwin / Msys2, spawn MinGW GDB? => need GDB hackery?

o Run DejaGnu on GNU/Linux, spawn MinGW GDB on remote host? => where GNU/Linux could be WSL

o Other?

GDB testsuite

- BTW, compiling GDB on Cygwin is … sloooooooooooooooooooooow

- Solution – cross compile from GNU/Linux

o On Fedora, just install the cygwin cross compiler packages found in yselkowitz's Fedora copr:

• https://copr.fedorainfracloud.org/coprs/yselkowitz/cygwin/

o Elsewhere, you can use my cygwin-cross wrapper – a docker container that pulls in yselkowitz's packages:

• https://github.com/palves/cygwin-cross

- Cross compile from GNU/Linux

- SMB-mount GNU/Linux build dir on Windows

- Run testsuite in Cygwin, inside Windows

- Configure just the testsuite (not the whole of gdb), and then run make check:

$ /path/to/src/gdb/testsuite/configure

$ make check-parallel –j8 RUNTESTFLAGS="\

 GDB=/cygdrive/x/gdb/build-cygwin-cross/gdb/gdb \

 GDB_DATA_DIRECTORY=/cygdrive/x/gdb/build-cygwin-cross/gdb/data-directory"

https://copr.fedorainfracloud.org/coprs/yselkowitz/cygwin/
https://github.com/palves/cygwin-cross

GDB testsuite

- Testsuite on Cygwin, a struggle

- Slooooooooow

- Flaky

- Infinite hangs
o Needs hand holding – kill gdb processes to unblock rest of run

o Mitigated by skipping tests we know can't work, like fork tests

o Remaining hangs odd => GDB hangs forever on exit, after DejaGnu closed stdio

- Lots of tests fail because regexps assume single-threaded
o But all Cygwin programs are multi-threaded => adjust tests, busy work

PDB (Program Database)

• Microsoft's native debug info format

• It's not DWARF

• Proprietary, undocumented for many years

• Windows native dlls to read it
o DIA SDK, dbghlp.dll

• MSFT provided a code dump of a reader on github a few years back

• LLVM since developed library to read PDB

• Other libraries appeared

• GCC patches to make GCC emit PDB

• No GDB patches

More IWBN features

• Microsoft C++ ABI
• Structure layout

• Name mangling (decoration) Scheme
Most ABIs use the Itanium C++ ABI, and its mangling scheme
$ echo _ZNSt6vectorIPKcSaIS1_EE9push_backEOS1_ | c++filt

std::vector<char const*, std::allocator<char const*> >::push_back(char const*&&)

Microsoft has its own scheme

• Calling convention(s)
• Calling functions in inferior

• finish/return commands

• Exception handling
• catch catch

• catch throw

• Intercept exceptions when stepping

The End

Non-stop mode plans

• GDB 13 made it possible to handle input and inferior events at the same time by moving this:

BOOL WaitForDebugEvent(

 [out] LPDEBUG_EVENT lpDebugEvent,

 [in] DWORD dwMilliseconds

);

… to a separate thread.

Windows debug API particularities

To detach from an inferior:

BOOL DebugActiveProcessStop(

 [in] DWORD dwProcessId

);

Must be called from the thread that started debugging the process..

..but if that thread is blocked waiting for events with "WaitForDebugEvent(INFINITE)"?

 => Can't detach!

Windows debug API particularities

Solution: force inferior process to report an event

// raise breakpoint trap

BOOL DebugBreakProcess(

 [in] HANDLE Process

);

// raise ctrl-c

BOOL WINAPI GenerateConsoleCtrlEvent(

 In DWORD dwCtrlEvent,

 In DWORD dwProcessGroupId

);

Awkward as forces the inferior to spawn a new thread.

Windows debug API particularities

Awkward as they force the inferior to spawn a new thread.

Would prefer if debug events were reported via standard WaitForMultipleObjects instead of WaitForDebugEvent.

Could then wait for both, simultaneously:

• debug events

• a Windows event (SetEvent) <<< used to unblock the thread

But that's not how it works...

Non-stop mode plans, Win10 to the rescue

 T1 T2 T3 T4 T5

1. [R] [R] [R] [R] [S] <<< all threads running free except T5, T3 about to raise exception

2. [k] [k] [E] [k] [S] <<< T3 raises exception, kernel pauses whole process

3. [k] [k] [S] [k] [S] <<< GDB suspends T3 (SuspendThread => suspend count == 1)

4. [R] [R] [S] [R] [S] <<< GDB issues ContinueDebugEvent(T3, DBG_REPLY_LATER),

 remembers event will be repeated

5. ... <<< user inspects T3, backtrace, prints variables, etc.

6. [R] [R] [R] [R] [S] <<< user resumes T3, GDB unsuspends T3 (ResumeThread => suspend count == 0)

7. [k] [k] [E] [k] [S] <<< T3 immediately re-reports exception, kernel pauses whole process

8. [R] [R] [R] [R] [S] <<< GDB issues ContinueDebugEvent(T3, DBG_CONTINUE or

 DBG_EXCEPTION_NOT_HANDLED)

R - runnable (suspend count == 0) E – exception event, suspended by kernel

k - suspended by kernel S - suspended by GDB (suspend count == 1)

Non-stop mode plans, Win10 to the rescue

1. WaitForDebugEvent reports event for thread T // kernel suspends all the threads

2. SuspendThread thread T // we want T to be remain suspended after ContinueDebugEvent

3. ContinueDebugEvent DBG_REPLY_LATER // sets all other threads running free again

4. Record that we're expecting a repeated DBG_REPLY_LATER kernel event

5. Report event for T to GDB core

Later:

1. User resumes thread T again, decides to pass or not exception down

2. We record in T's data structure whether to pass exception down or not

3. ResumeThread thread T

4. Due to earlier DBG_REPLY_LATER, kernel reports same event for T again

5. GDB knows it is expecting the repeated event for T, and calls ContinueDebugEvent immediately:
o with either DBG_CONTINUE or DBG_EXCEPTION_NOT_HANDLED appropriately

	Default Section
	Slide 1: GDB on Windows status & plans
	Slide 2: Agenda
	Slide 3: Windows debug API core
	Slide 4: Windows debug API, WaitForDebugEvent
	Slide 5: Windows debug API, ContinueDebugEvent
	Slide 6: Async mode
	Slide 7: All-stop mode
	Slide 8: All-stop mode + "set scheduler-locking on"
	Slide 9: Non-stop mode
	Slide 10: Non-stop mode plans
	Slide 11: Non-stop mode plans, Win10 to the rescue
	Slide 12: Non-stop, sequence of events
	Slide 13: Non-stop, multiple events works too
	Slide 14: Non-stop mode plans, there's more to it
	Slide 15: GDB on Windows, two ports
	Slide 16: GDB testsuite
	Slide 17: GDB testsuite
	Slide 18: GDB testsuite
	Slide 19: PDB (Program Database)
	Slide 20: More IWBN features
	Slide 21: The End
	Slide 22: Non-stop mode plans
	Slide 23: Windows debug API particularities
	Slide 24: Windows debug API particularities
	Slide 25: Windows debug API particularities
	Slide 26: Non-stop mode plans, Win10 to the rescue
	Slide 27: Non-stop mode plans, Win10 to the rescue

