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Who are we
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• Degree in computer science

• Worked mostly on embedded Linux distributions

• Cybersecurity (ISO 21434/UNECE)

• Private: Cats and nature

Embedded Systems Developer

Elektrobit – Driving the future of 
software

Simone Weiß

• Degree in electrical engineering

• Embedded Linux & Python

• Private: MMA, hiking and cooking

Senior Software engineer

Elektrobit – Driving the future of 
software

Michael Estner



Auxiliary 

Auxiliary 

Auxiliary 

February 3, 2024© Elektrobit 2024 | Public

We are Elektrobit
Your software solution provider

35 YEARS 
AUTOMOTIVE 
EXPERIENCE 

10 YEARS OPEN-
SOURCE 

EXPERIENCE

EB CORBOS LINUX 
BUILT ON UBUNTU

EMBEDDED LINUX 
SYSTEM WITH 

YOCTO

CYBERSECURITY 
MANAGEMENT 
SYSTEM (CSMS) 

COMPLIANT
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Why test your firewall rules?
Cybersecurity requirements

© Elektrobit 2024 | Public
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Cybersecurity requirements
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UN R155 and ISO 21434 – Cybersecurity maintenance

© Elektrobit 2024 | Public

Aug 2021 ISO/SAE 21434 
published

Jul 2024 EU: UN R155 for 
all new vehicle 

registrations 

UN R155 
published Jan 2021

Jul 2022

UN R155 for 
all new 

vehicle types

Japan: UN 
R155 for all 

new vehicle 
registrations 

UN R155 Regulation on cybersecurity

- Mandatory in all UNECE member countries (64)

- Defines requirements for the cybersecurity 
management system (CSMS) in vehicles

- Ensures that cybersecurity practices and measures are 
adequately applied across the development process 
and life cycle of vehicles 

- Applies to all software in vehicles

ISO/SAE 
21434

Road vehicles – Cybersecurity engineering

- Requirements and recommendations to develop 
a cybersecurity product

- Baseline for CSMS

https://unece.org/member-states-and-member-states-representatives
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Packet filtering

• Packet filter inspects traffic in the network stack

• Use cases

o Firewall

o Traffic statistics

o Logging

o ...

• Linux packet filter

o Kernelspace

• netfilter

o Userspace

• iptables, ip6tables, ebtables, arptables

• nftables

Packet filter

Application

Driver

ingressing egressing
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Netfilter

Community-driven FOSS project

Provides packet filtering and network address translation 
for the Linux kernel

Key components:

• Hooks: Intercept packets at different stages

• Tables: Has a specific packet-handling task

• Chains: Sequences of rules within a table

• Targets: Action when packet matches a rule
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Netfilter
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https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks 19.12.2023 15:19

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks
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• Userspace program to interact with the 
netfilter

• Organized in tables that  contains 
several chains

• A chain is a list of rules which can match a 
set of packets

• A rule specifies what to do with a packet 
that matches

– If so, the next rule is the one specified by the 
target: User-defined, or ACCEPT, DROP, 
QUEUE, or RETURN

– If not, next rule is the next in the chain

Input
Rule 1

Rule 2

...

Output

...

...

Filter

Output
Rule 1

Rule 2

...

Prerouting

...

...

Nat

Input
Rule 1

Rule 2

...

Output

...

...

Mangle
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• Chain FORWARD

– Rule 1: All traffic is sent to the DOCKER-USER chain

• Chain DOCKER-USER

– Rule 1: Target is return for all traffic

• Chain FORWARD

– Rule 2: All traffic is sent to the DOCKER-ISOLATION-
STAGE-1 chain

• Chain DOCKER-ISOLATION-STAGE-1

– Rule 1: All traffic from docker0 interface to 
anywhere that is not itself is sent to the DOCKER-
ISOLATION-STAGE-2 chain.

– Rule 2: Return all traffic

• Chain DOCKER-ISOLATION-STAGE-2

– Rule 1: Drop all traffic to docker0

– Rule 2: Return else

*filter

:INPUT ACCEPT [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

:DOCKER - [0:0]

:DOCKER-ISOLATION-STAGE-1 - [0:0]

:DOCKER-ISOLATION-STAGE-2 - [0:0]

:DOCKER-USER - [0:0]

-A FORWARD -j DOCKER-USER

-A FORWARD -j DOCKER-ISOLATION-STAGE-1

-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -o docker0 -j DOCKER

-A FORWARD -i docker0 ! -o docker0 -j ACCEPT

-A FORWARD -i docker0 -o docker0 -j ACCEPT

-A DOCKER-ISOLATION-STAGE-1 -i docker0 ! -o docker0 -j DOCKER-ISOLATION-STAGE-2

-A DOCKER-ISOLATION-STAGE-1 -j RETURN

-A DOCKER-ISOLATION-STAGE-2 -o docker0 -j DROP

-A DOCKER-ISOLATION-STAGE-2 -j RETURN

-A DOCKER-USER -j RETURN

COMMIT

*nat
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• Chain FORWARD

– Rule 1: All traffic is sent to the DOCKER-USER chain

• Chain DOCKER-USER

– Rule 1: Target is return for all traffic

• Chain FORWARD

– Rule 2: All traffic is sent to the DOCKER-ISOLATION-
STAGE-1 chain

• Chain DOCKER-ISOLATION-STAGE-1

– Rule 1: All traffic from docker0 interface to 
anywhere that is not itself is sent to the DOCKER-
ISOLATION-STAGE-2 chain.

– Rule 2: Return all traffic

• Chain DOCKER-ISOLATION-STAGE-2

– Rule 1: Drop all traffic to docker0

– Rule 2: Return else

*filter

:INPUT ACCEPT [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

:DOCKER - [0:0]

:DOCKER-ISOLATION-STAGE-1 - [0:0]

:DOCKER-ISOLATION-STAGE-2 - [0:0]

:DOCKER-USER - [0:0]

-A FORWARD -j DOCKER-USER

-A FORWARD -j DOCKER-ISOLATION-STAGE-1

-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -o docker0 -j DOCKER

-A FORWARD -i docker0 ! -o docker0 -j ACCEPT

-A FORWARD -i docker0 -o docker0 -j ACCEPT

-A DOCKER-ISOLATION-STAGE-1 -i docker0 ! -o docker0 -j DOCKER-ISOLATION-STAGE-2

-A DOCKER-ISOLATION-STAGE-1 -j RETURN

-A DOCKER-ISOLATION-STAGE-2 -o docker0 -j DROP

-A DOCKER-ISOLATION-STAGE-2 -j RETURN

-A DOCKER-USER -j RETURN

COMMIT

*nat
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• Chain FORWARD

– Rule 1: All traffic is sent to the DOCKER-USER chain

• Chain DOCKER-USER

– Rule 1: Target is return for all traffic

• Chain FORWARD

– Rule 2: All traffic is sent to the DOCKER-ISOLATION-
STAGE-1 chain

• Chain DOCKER-ISOLATION-STAGE-1

– Rule 1: All traffic from docker0 interface to 
anywhere that is not itself is sent to the DOCKER-
ISOLATION-STAGE-2 chain.

– Rule 2: Return all traffic

• Chain DOCKER-ISOLATION-STAGE-2

– Rule 1: Drop all traffic to docker0

– Rule 2: Return else

*filter

:INPUT ACCEPT [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

:DOCKER - [0:0]

:DOCKER-ISOLATION-STAGE-1 - [0:0]

:DOCKER-ISOLATION-STAGE-2 - [0:0]

:DOCKER-USER - [0:0]

-A FORWARD -j DOCKER-USER

-A FORWARD -j DOCKER-ISOLATION-STAGE-1

-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -o docker0 -j DOCKER

-A FORWARD -i docker0 ! -o docker0 -j ACCEPT

-A FORWARD -i docker0 -o docker0 -j ACCEPT

-A DOCKER-ISOLATION-STAGE-1 -i docker0 ! -o docker0 -j DOCKER-ISOLATION-STAGE-2

-A DOCKER-ISOLATION-STAGE-1 -j RETURN

-A DOCKER-ISOLATION-STAGE-2 -o docker0 -j DROP

-A DOCKER-ISOLATION-STAGE-2 -j RETURN

-A DOCKER-USER -j RETURN

COMMIT

*nat
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• Chain FORWARD

– Rule 1: All traffic is sent to the DOCKER-USER chain

• Chain DOCKER-USER

– Rule 1: Target is return for all traffic

• Chain FORWARD

– Rule 2: All traffic is sent to the DOCKER-ISOLATION-
STAGE-1 chain

• Chain DOCKER-ISOLATION-STAGE-1

– Rule 1: All traffic from docker0 interface to 
anywhere that is not itself is sent to the DOCKER-
ISOLATION-STAGE-2 chain.

– Rule 2: Return all traffic

• Chain DOCKER-ISOLATION-STAGE-2

– Rule 1: Drop all traffic to docker0

– Rule 2: Return else

*filter

:INPUT ACCEPT [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

:DOCKER - [0:0]

:DOCKER-ISOLATION-STAGE-1 - [0:0]

:DOCKER-ISOLATION-STAGE-2 - [0:0]

:DOCKER-USER - [0:0]

-A FORWARD -j DOCKER-USER

-A FORWARD -j DOCKER-ISOLATION-STAGE-1

-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -o docker0 -j DOCKER

-A FORWARD -i docker0 ! -o docker0 -j ACCEPT

-A FORWARD -i docker0 -o docker0 -j ACCEPT

-A DOCKER-ISOLATION-STAGE-1 -i docker0 ! -o docker0 -j DOCKER-ISOLATION-STAGE-2

-A DOCKER-ISOLATION-STAGE-1 -j RETURN

-A DOCKER-ISOLATION-STAGE-2 -o docker0 -j DROP

-A DOCKER-ISOLATION-STAGE-2 -j RETURN

-A DOCKER-USER -j RETURN

COMMIT

*nat
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• Chain FORWARD

– Rule 1: All traffic is sent to the DOCKER-USER chain

• Chain DOCKER-USER

– Rule 1: Target is return for all traffic

• Chain FORWARD

– Rule 2: All traffic is sent to the DOCKER-ISOLATION-
STAGE-1 chain

• Chain DOCKER-ISOLATION-STAGE-1

– Rule 1: All traffic from docker0 interface to 
anywhere that is not itself is sent to the DOCKER-
ISOLATION-STAGE-2 chain.

– Rule 2: Return all traffic

• Chain DOCKER-ISOLATION-STAGE-2

– Rule 1: Drop all traffic to docker0

– Rule 2: Return else

*filter

:INPUT ACCEPT [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

:DOCKER - [0:0]

:DOCKER-ISOLATION-STAGE-1 - [0:0]

:DOCKER-ISOLATION-STAGE-2 - [0:0]

:DOCKER-USER - [0:0]

-A FORWARD -j DOCKER-USER

-A FORWARD -j DOCKER-ISOLATION-STAGE-1

-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -o docker0 -j DOCKER

-A FORWARD -i docker0 ! -o docker0 -j ACCEPT

-A FORWARD -i docker0 -o docker0 -j ACCEPT

-A DOCKER-ISOLATION-STAGE-1 -i docker0 ! -o docker0 -j DOCKER-ISOLATION-STAGE-2

-A DOCKER-ISOLATION-STAGE-1 -j RETURN

-A DOCKER-ISOLATION-STAGE-2 -o docker0 -j DROP

-A DOCKER-ISOLATION-STAGE-2 -j RETURN

-A DOCKER-USER -j RETURN

COMMIT

*nat
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socat

nemesis

netcatscapy

...
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• Python based interactive packet 
manipulating library

• With scapy you can define, send and 
receive complete custom packets

• You can manipulate across different 
layers

• Low barrier to create custom 
network packets

• Easy to integrate in the existing test 
eco system

Link Layer
• Ethernet

Transport Layer
• TCP
• UDP

Network Layer
• IPV4
• IPV6
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Scapy and the netfilter
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• Ingressing

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks 19.12.2023 15:18

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks
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• Egressing

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks 19.12.2023 15:18

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks
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TCP upon IP protocol with basic fields

• IP(src="1.2.3.4",dst="1.2.3.5")/TCP(dport=80, flags="S")

UDP upon IP with random sourceport

• IP(src=RandIP(), dst="1.2.3.4")/UDP(sport=RandShort(), dport=80, chksum=0xFFFF)

ICMP

• IP(dst="1.2.3.4") / ICMP(type=3, code=0)

Sending, Receiving

• Available at different layers, in loops...

Sniffing

• sniff(iface='eth3', filter = lambda s: s[TCP].flags == 18, prn = lambda x: x[IP].dst)
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Bringing it all together...
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Craft a fitting package:

packet = IP(ttl=8, dst="192.168.7.2)/TCP(dport=1234, 
flags=0x02)

Send it:

send(packet, iface="tap0")

Sniff for it:

sniff(iface="eth0", filter="tcp and port 1234", 
count=1, prn=packet1_check )

© Elektrobit 2024 | Public

iptables -A INPUT -p tcp -m ttl --ttl-eq 8 -m tcp --dport 1234 --tcp-flags FIN,SYN,RST,ACK SYN -j DROP

def packet1_check(x)

if x.ttl == 8 and x[TCP].flags == "S":

print("accepted by FW")

else:

print("rejected by FW")
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Bringing it all together...
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Craft a fitting package:

packet = IP(src="192.168.7.0, dst="192.168.7.2") / 
TCP(dport=22)

Send it:

send(packet, iface="tap0")

Sniff for it:

sniff(iface="eth0",  filter="tcp and src 
192.168.7.0, count=1, prn=packet2_check )

© Elektrobit 2024 | Public

Iptables – A INPUT –s 192.168.7.0/24 -I eth0 –p tcp –dport 22 –m state –state NEW,ESTABLISHED –j ACCEPT

def packet2_check(x)

if x[TCP].dport == 22:

print("accepted by FW")

else:

print("rejected by FW")
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Craft a fitting package:

pkt = TCP(dport=100)

Send it:

s.setsockopt(socket.SOL_SOCKET, 25, str("eth0"))

s.bind(('192.168.7.2', 0))

s.sendto(bytes(pkt), ("192.168.7.1", 0))

Sniff for it:

sniff(iface="tap0",  filter="tcp and port 
60001", count="1", prn=packet3_check)

© Elektrobit 2024 | Public

Iptables –t nat –A OUTPUT –d 192.168.7.1/32 -o eth0 –p tcp --dport 100 –j REDIRECT --to-ports 60001

def packet3_check(x)

if x[TCP].dport == 60001:

print("accepted by FW")

else:

print("rejected by FW")
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Test firewall rules - Demo
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DEMO

© Elektrobit 2024 | Public

https://github.com/simone-weiss/iptables-test-with-scapy
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Summary

Why you have to test your firewall rules

Netfilter basics

Ip(6)tables overview

Toollandscape for network testing

Scapy usage

Test iptables firewall rules
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Embedded Systems Developer, EB-EST-CMS-P-1

Elektrobit – Driving the future of software

simone.weiss@elektrobit.com
elektrobit.com

Simone Weiß Michael Estner

Senior Software Engineer, EB-EST-CMS-P-1

Elektrobit – Driving the future of software

michael.estner@elektrobit .com
elektrobit.com

Questions?
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https://www.linkedin.com/company/elektrobit-eb-automotive/mycompany/
https://www.youtube.com/@Elektrobit_official
https://www.facebook.com/ElektrobitOfficial/
https://www.instagram.com/elektrobit_official/
https://twitter.com/EB_automotive
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