
Auxiliary

Auxiliary

Auxiliary

−

Comply with Cybersecurity Requirements like UNECE R-155

Simone Weiß and Michael Estner

Testing iptables
firewall rules with
scapy

© Elektrobit 2024 | Public

February 3, 2024

Auxiliary

Auxiliary

Auxiliary

06

Agenda

01

05
04

03
02

Who are we

Why test your firewall rules

Netfilter and iptables

Scapy

Firewall tests with scapy

Summary

February 3, 2024© Elektrobit 2024 | Public

Auxiliary

Auxiliary

Auxiliary

Who are we

February 3, 2024© Elektrobit 2024 | Public

• Degree in computer science

• Worked mostly on embedded Linux distributions

• Cybersecurity (ISO 21434/UNECE)

• Private: Cats and nature

Embedded Systems Developer

Elektrobit – Driving the future of
software

Simone Weiß

• Degree in electrical engineering

• Embedded Linux & Python

• Private: MMA, hiking and cooking

Senior Software engineer

Elektrobit – Driving the future of
software

Michael Estner

Auxiliary

Auxiliary

Auxiliary

February 3, 2024© Elektrobit 2024 | Public

We are Elektrobit
Your software solution provider

35 YEARS
AUTOMOTIVE
EXPERIENCE

10 YEARS OPEN-
SOURCE

EXPERIENCE

EB CORBOS LINUX
BUILT ON UBUNTU

EMBEDDED LINUX
SYSTEM WITH

YOCTO

CYBERSECURITY
MANAGEMENT
SYSTEM (CSMS)

COMPLIANT

Auxiliary

Auxiliary

Auxiliary

February 3, 2024

Why test your firewall rules?
Cybersecurity requirements

© Elektrobit 2024 | Public

Auxiliary

Auxiliary

Auxiliary

Cybersecurity requirements

February 3, 2024

UN R155 and ISO 21434 – Cybersecurity maintenance

© Elektrobit 2024 | Public

Aug 2021 ISO/SAE 21434
published

Jul 2024 EU: UN R155 for
all new vehicle

registrations

UN R155
published Jan 2021

Jul 2022

UN R155 for
all new

vehicle types

Japan: UN
R155 for all

new vehicle
registrations

UN R155 Regulation on cybersecurity

- Mandatory in all UNECE member countries (64)

- Defines requirements for the cybersecurity
management system (CSMS) in vehicles

- Ensures that cybersecurity practices and measures are
adequately applied across the development process
and life cycle of vehicles

- Applies to all software in vehicles

ISO/SAE
21434

Road vehicles – Cybersecurity engineering

- Requirements and recommendations to develop
a cybersecurity product

- Baseline for CSMS

https://unece.org/member-states-and-member-states-representatives

Auxiliary

Auxiliary

Auxiliary

Introduction

February 3, 2024© Elektrobit 2024 | Public

Packet filtering

• Packet filter inspects traffic in the network stack

• Use cases

o Firewall

o Traffic statistics

o Logging

o ...

• Linux packet filter

o Kernelspace

• netfilter

o Userspace

• iptables, ip6tables, ebtables, arptables

• nftables

Packet filter

Application

Driver

ingressing egressing

Auxiliary

Auxiliary

Auxiliary

´

February 3, 2024© Elektrobit 2024 | Public

Netfilter

Community-driven FOSS project

Provides packet filtering and network address translation
for the Linux kernel

Key components:

• Hooks: Intercept packets at different stages

• Tables: Has a specific packet-handling task

• Chains: Sequences of rules within a table

• Targets: Action when packet matches a rule

Auxiliary

Auxiliary

Auxiliary

Netfilter

February 3, 2024© Elektrobit 2024 | Public

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks 19.12.2023 15:19

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks

Auxiliary

Auxiliary

Auxiliary

Ip(6)tables

February 3, 2024© Elektrobit 2024 | Public

• Userspace program to interact with the
netfilter

• Organized in tables that contains
several chains

• A chain is a list of rules which can match a
set of packets

• A rule specifies what to do with a packet
that matches

– If so, the next rule is the one specified by the
target: User-defined, or ACCEPT, DROP,
QUEUE, or RETURN

– If not, next rule is the next in the chain

Input
Rule 1

Rule 2

...

Output

...

...

Filter

Output
Rule 1

Rule 2

...

Prerouting

...

...

Nat

Input
Rule 1

Rule 2

...

Output

...

...

Mangle

Auxiliary

Auxiliary

Auxiliary

Ip(6)tables

February 3, 2024© Elektrobit 2024 | Public

• Chain FORWARD

– Rule 1: All traffic is sent to the DOCKER-USER chain

• Chain DOCKER-USER

– Rule 1: Target is return for all traffic

• Chain FORWARD

– Rule 2: All traffic is sent to the DOCKER-ISOLATION-
STAGE-1 chain

• Chain DOCKER-ISOLATION-STAGE-1

– Rule 1: All traffic from docker0 interface to
anywhere that is not itself is sent to the DOCKER-
ISOLATION-STAGE-2 chain.

– Rule 2: Return all traffic

• Chain DOCKER-ISOLATION-STAGE-2

– Rule 1: Drop all traffic to docker0

– Rule 2: Return else

*filter

:INPUT ACCEPT [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

:DOCKER - [0:0]

:DOCKER-ISOLATION-STAGE-1 - [0:0]

:DOCKER-ISOLATION-STAGE-2 - [0:0]

:DOCKER-USER - [0:0]

-A FORWARD -j DOCKER-USER

-A FORWARD -j DOCKER-ISOLATION-STAGE-1

-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -o docker0 -j DOCKER

-A FORWARD -i docker0 ! -o docker0 -j ACCEPT

-A FORWARD -i docker0 -o docker0 -j ACCEPT

-A DOCKER-ISOLATION-STAGE-1 -i docker0 ! -o docker0 -j DOCKER-ISOLATION-STAGE-2

-A DOCKER-ISOLATION-STAGE-1 -j RETURN

-A DOCKER-ISOLATION-STAGE-2 -o docker0 -j DROP

-A DOCKER-ISOLATION-STAGE-2 -j RETURN

-A DOCKER-USER -j RETURN

COMMIT

*nat

Auxiliary

Auxiliary

Auxiliary

Ip(6)tables

February 3, 2024© Elektrobit 2024 | Public

• Chain FORWARD

– Rule 1: All traffic is sent to the DOCKER-USER chain

• Chain DOCKER-USER

– Rule 1: Target is return for all traffic

• Chain FORWARD

– Rule 2: All traffic is sent to the DOCKER-ISOLATION-
STAGE-1 chain

• Chain DOCKER-ISOLATION-STAGE-1

– Rule 1: All traffic from docker0 interface to
anywhere that is not itself is sent to the DOCKER-
ISOLATION-STAGE-2 chain.

– Rule 2: Return all traffic

• Chain DOCKER-ISOLATION-STAGE-2

– Rule 1: Drop all traffic to docker0

– Rule 2: Return else

*filter

:INPUT ACCEPT [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

:DOCKER - [0:0]

:DOCKER-ISOLATION-STAGE-1 - [0:0]

:DOCKER-ISOLATION-STAGE-2 - [0:0]

:DOCKER-USER - [0:0]

-A FORWARD -j DOCKER-USER

-A FORWARD -j DOCKER-ISOLATION-STAGE-1

-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -o docker0 -j DOCKER

-A FORWARD -i docker0 ! -o docker0 -j ACCEPT

-A FORWARD -i docker0 -o docker0 -j ACCEPT

-A DOCKER-ISOLATION-STAGE-1 -i docker0 ! -o docker0 -j DOCKER-ISOLATION-STAGE-2

-A DOCKER-ISOLATION-STAGE-1 -j RETURN

-A DOCKER-ISOLATION-STAGE-2 -o docker0 -j DROP

-A DOCKER-ISOLATION-STAGE-2 -j RETURN

-A DOCKER-USER -j RETURN

COMMIT

*nat

Auxiliary

Auxiliary

Auxiliary

Ip(6)tables

February 3, 2024© Elektrobit 2024 | Public

• Chain FORWARD

– Rule 1: All traffic is sent to the DOCKER-USER chain

• Chain DOCKER-USER

– Rule 1: Target is return for all traffic

• Chain FORWARD

– Rule 2: All traffic is sent to the DOCKER-ISOLATION-
STAGE-1 chain

• Chain DOCKER-ISOLATION-STAGE-1

– Rule 1: All traffic from docker0 interface to
anywhere that is not itself is sent to the DOCKER-
ISOLATION-STAGE-2 chain.

– Rule 2: Return all traffic

• Chain DOCKER-ISOLATION-STAGE-2

– Rule 1: Drop all traffic to docker0

– Rule 2: Return else

*filter

:INPUT ACCEPT [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

:DOCKER - [0:0]

:DOCKER-ISOLATION-STAGE-1 - [0:0]

:DOCKER-ISOLATION-STAGE-2 - [0:0]

:DOCKER-USER - [0:0]

-A FORWARD -j DOCKER-USER

-A FORWARD -j DOCKER-ISOLATION-STAGE-1

-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -o docker0 -j DOCKER

-A FORWARD -i docker0 ! -o docker0 -j ACCEPT

-A FORWARD -i docker0 -o docker0 -j ACCEPT

-A DOCKER-ISOLATION-STAGE-1 -i docker0 ! -o docker0 -j DOCKER-ISOLATION-STAGE-2

-A DOCKER-ISOLATION-STAGE-1 -j RETURN

-A DOCKER-ISOLATION-STAGE-2 -o docker0 -j DROP

-A DOCKER-ISOLATION-STAGE-2 -j RETURN

-A DOCKER-USER -j RETURN

COMMIT

*nat

Auxiliary

Auxiliary

Auxiliary

Ip(6)tables

February 3, 2024© Elektrobit 2024 | Public

• Chain FORWARD

– Rule 1: All traffic is sent to the DOCKER-USER chain

• Chain DOCKER-USER

– Rule 1: Target is return for all traffic

• Chain FORWARD

– Rule 2: All traffic is sent to the DOCKER-ISOLATION-
STAGE-1 chain

• Chain DOCKER-ISOLATION-STAGE-1

– Rule 1: All traffic from docker0 interface to
anywhere that is not itself is sent to the DOCKER-
ISOLATION-STAGE-2 chain.

– Rule 2: Return all traffic

• Chain DOCKER-ISOLATION-STAGE-2

– Rule 1: Drop all traffic to docker0

– Rule 2: Return else

*filter

:INPUT ACCEPT [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

:DOCKER - [0:0]

:DOCKER-ISOLATION-STAGE-1 - [0:0]

:DOCKER-ISOLATION-STAGE-2 - [0:0]

:DOCKER-USER - [0:0]

-A FORWARD -j DOCKER-USER

-A FORWARD -j DOCKER-ISOLATION-STAGE-1

-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -o docker0 -j DOCKER

-A FORWARD -i docker0 ! -o docker0 -j ACCEPT

-A FORWARD -i docker0 -o docker0 -j ACCEPT

-A DOCKER-ISOLATION-STAGE-1 -i docker0 ! -o docker0 -j DOCKER-ISOLATION-STAGE-2

-A DOCKER-ISOLATION-STAGE-1 -j RETURN

-A DOCKER-ISOLATION-STAGE-2 -o docker0 -j DROP

-A DOCKER-ISOLATION-STAGE-2 -j RETURN

-A DOCKER-USER -j RETURN

COMMIT

*nat

Auxiliary

Auxiliary

Auxiliary

Ip(6)tables

February 3, 2024© Elektrobit 2024 | Public

• Chain FORWARD

– Rule 1: All traffic is sent to the DOCKER-USER chain

• Chain DOCKER-USER

– Rule 1: Target is return for all traffic

• Chain FORWARD

– Rule 2: All traffic is sent to the DOCKER-ISOLATION-
STAGE-1 chain

• Chain DOCKER-ISOLATION-STAGE-1

– Rule 1: All traffic from docker0 interface to
anywhere that is not itself is sent to the DOCKER-
ISOLATION-STAGE-2 chain.

– Rule 2: Return all traffic

• Chain DOCKER-ISOLATION-STAGE-2

– Rule 1: Drop all traffic to docker0

– Rule 2: Return else

*filter

:INPUT ACCEPT [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

:DOCKER - [0:0]

:DOCKER-ISOLATION-STAGE-1 - [0:0]

:DOCKER-ISOLATION-STAGE-2 - [0:0]

:DOCKER-USER - [0:0]

-A FORWARD -j DOCKER-USER

-A FORWARD -j DOCKER-ISOLATION-STAGE-1

-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -o docker0 -j DOCKER

-A FORWARD -i docker0 ! -o docker0 -j ACCEPT

-A FORWARD -i docker0 -o docker0 -j ACCEPT

-A DOCKER-ISOLATION-STAGE-1 -i docker0 ! -o docker0 -j DOCKER-ISOLATION-STAGE-2

-A DOCKER-ISOLATION-STAGE-1 -j RETURN

-A DOCKER-ISOLATION-STAGE-2 -o docker0 -j DROP

-A DOCKER-ISOLATION-STAGE-2 -j RETURN

-A DOCKER-USER -j RETURN

COMMIT

*nat

Auxiliary

Auxiliary

Auxiliary

Toollandscape

February 3, 2024© Elektrobit 2024 | Public

socat

nemesis

netcatscapy

...

Auxiliary

Auxiliary

Auxiliary

Why scapy?

February 3, 2024© Elektrobit 2024 | Public

• Python based interactive packet
manipulating library

• With scapy you can define, send and
receive complete custom packets

• You can manipulate across different
layers

• Low barrier to create custom
network packets

• Easy to integrate in the existing test
eco system

Link Layer
• Ethernet

Transport Layer
• TCP
• UDP

Network Layer
• IPV4
• IPV6

Auxiliary

Auxiliary

Auxiliary

Scapy and the netfilter

February 3, 2024© Elektrobit 2024 | Public

• Ingressing

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks 19.12.2023 15:18

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks

Auxiliary

Auxiliary

Auxiliary

Scapy and the netfilter

February 3, 2024© Elektrobit 2024 | Public

• Egressing

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks 19.12.2023 15:18

https://wiki.nftables.org/wiki-nftables/index.php/Netfilter_hooks

Auxiliary

Auxiliary

Auxiliary

Scapy – Basic examples

February 3, 2024© Elektrobit 2024 | Public

TCP upon IP protocol with basic fields

• IP(src="1.2.3.4",dst="1.2.3.5")/TCP(dport=80, flags="S")

UDP upon IP with random sourceport

• IP(src=RandIP(), dst="1.2.3.4")/UDP(sport=RandShort(), dport=80, chksum=0xFFFF)

ICMP

• IP(dst="1.2.3.4") / ICMP(type=3, code=0)

Sending, Receiving

• Available at different layers, in loops...

Sniffing

• sniff(iface='eth3', filter = lambda s: s[TCP].flags == 18, prn = lambda x: x[IP].dst)

Auxiliary

Auxiliary

Auxiliary

Bringing it all together...

February 3, 2024

Craft a fitting package:

packet = IP(ttl=8, dst="192.168.7.2)/TCP(dport=1234,
flags=0x02)

Send it:

send(packet, iface="tap0")

Sniff for it:

sniff(iface="eth0", filter="tcp and port 1234",
count=1, prn=packet1_check)

© Elektrobit 2024 | Public

iptables -A INPUT -p tcp -m ttl --ttl-eq 8 -m tcp --dport 1234 --tcp-flags FIN,SYN,RST,ACK SYN -j DROP

def packet1_check(x)

if x.ttl == 8 and x[TCP].flags == "S":

print("accepted by FW")

else:

print("rejected by FW")

Auxiliary

Auxiliary

Auxiliary

Bringing it all together...

February 3, 2024

Craft a fitting package:

packet = IP(src="192.168.7.0, dst="192.168.7.2") /
TCP(dport=22)

Send it:

send(packet, iface="tap0")

Sniff for it:

sniff(iface="eth0", filter="tcp and src
192.168.7.0, count=1, prn=packet2_check)

© Elektrobit 2024 | Public

Iptables – A INPUT –s 192.168.7.0/24 -I eth0 –p tcp –dport 22 –m state –state NEW,ESTABLISHED –j ACCEPT

def packet2_check(x)

if x[TCP].dport == 22:

print("accepted by FW")

else:

print("rejected by FW")

Auxiliary

Auxiliary

Auxiliary

Bringing it all together...

February 3, 2024

Craft a fitting package:

pkt = TCP(dport=100)

Send it:

s.setsockopt(socket.SOL_SOCKET, 25, str("eth0"))

s.bind(('192.168.7.2', 0))

s.sendto(bytes(pkt), ("192.168.7.1", 0))

Sniff for it:

sniff(iface="tap0", filter="tcp and port
60001", count="1", prn=packet3_check)

© Elektrobit 2024 | Public

Iptables –t nat –A OUTPUT –d 192.168.7.1/32 -o eth0 –p tcp --dport 100 –j REDIRECT --to-ports 60001

def packet3_check(x)

if x[TCP].dport == 60001:

print("accepted by FW")

else:

print("rejected by FW")

Auxiliary

Auxiliary

Auxiliary

Test firewall rules - Demo

February 3, 2024

DEMO

© Elektrobit 2024 | Public

https://github.com/simone-weiss/iptables-test-with-scapy

Auxiliary

Auxiliary

Auxiliary

February 3, 2024© Elektrobit 2024 | Public

Summary

Why you have to test your firewall rules

Netfilter basics

Ip(6)tables overview

Toollandscape for network testing

Scapy usage

Test iptables firewall rules

Auxiliary

Auxiliary

Auxiliary

Embedded Systems Developer, EB-EST-CMS-P-1

Elektrobit – Driving the future of software

simone.weiss@elektrobit.com
elektrobit.com

Simone Weiß Michael Estner

Senior Software Engineer, EB-EST-CMS-P-1

Elektrobit – Driving the future of software

michael.estner@elektrobit .com
elektrobit.com

Questions?

February 3, 2024© Elektrobit 2024 | Public

https://www.linkedin.com/company/elektrobit-eb-automotive/mycompany/
https://www.youtube.com/@Elektrobit_official
https://www.facebook.com/ElektrobitOfficial/
https://www.instagram.com/elektrobit_official/
https://twitter.com/EB_automotive

	Slide 1: Testing iptables firewall rules with scapy
	Slide 2: Agenda
	Slide 3: Who are we
	Slide 4: We are Elektrobit
	Slide 5: Why test your firewall rules?
	Slide 6: Cybersecurity requirements
	Slide 7: Introduction
	Slide 8: Netfilter
	Slide 9: Netfilter
	Slide 10: Ip(6)tables
	Slide 11: Ip(6)tables
	Slide 12: Ip(6)tables
	Slide 13: Ip(6)tables
	Slide 14: Ip(6)tables
	Slide 15: Ip(6)tables
	Slide 16: Toollandscape
	Slide 17: Why scapy?
	Slide 18: Scapy and the netfilter
	Slide 19: Scapy and the netfilter
	Slide 20: Scapy – Basic examples
	Slide 21: Bringing it all together...
	Slide 22: Bringing it all together...
	Slide 23: Bringing it all together...
	Slide 24: Test firewall rules - Demo
	Slide 25
	Slide 26: Questions?

