
Practical Introduction to Safe Reinforcement
Learning

Kryspin Varys

University of Southampton

4 February 2024

Practical Introduction to Safe Reinforcement Learning Kryspin Varys 1/49



Outline

Introduction to Safe RL
When to Use RL?
What is RL?
The Role of Open-Source in RL
When is RL safe?

Practical Scenarios
Scenario 1: Modification of the Optimality Criterion
Scenario 2: Modification of the Agent’s Actions

Practical Introduction to Safe Reinforcement Learning Kryspin Varys 2/49



Introduction to Safe RL
When to Use RL?

To solve control problems:
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Introduction to Safe RL
What is RL?

The environment:

Markov decision process = ⟨ S,A,

R : S ×A → R,
T : S ×A → S ⟩

discrete env.

continuous env.
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Introduction to Safe RL
What is RL?

The agent π is either:
1. table in the case of small discrete spaces, or

2. neural network in the case of large spaces.

indentation
indentation

discrete env.

continuous env.
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Introduction to Safe RL
What is RL?

The agent π aims to maximize an optimality
criterion:

maxEπ

[ ∞∑
t=0

γtR(st , at)

]

discrete env.

continuous env.
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Introduction to Safe RL
What is RL?

The agent’s lifecycle has two phases:

1. the traning phase and

2. the deployment phase.
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Introduction to Safe RL
What is RL?

Training

1. Exploration

1.1 Random actions

2. Exploitation

2.1 Best actions according to
the optimality criterion

Deployment

1. Exploitation

indentation

indentation

The agent π aims to maximize the optimality criterion:

maxEπ

[ ∞∑
t=0

γtR(st , at)

]

Practical Introduction to Safe Reinforcement Learning Kryspin Varys 8/49



Introduction to Safe RL
What is RL?

Training

1. Exploration

1.1 Random actions

2. Exploitation

2.1 Best actions according to
the optimality criterion

Deployment

1. Exploitation

indentation

indentation

The agent π aims to maximize the optimality criterion:

maxEπ

[ ∞∑
t=0

γtR(st , at)

]

Practical Introduction to Safe Reinforcement Learning Kryspin Varys 8/49



Introduction to Safe RL
What is RL?

Training

1. Exploration

1.1 Random actions

2. Exploitation

2.1 Best actions according to
the optimality criterion

Deployment

1. Exploitation

indentation

indentation

The agent π aims to maximize the optimality criterion:

maxEπ

[ ∞∑
t=0

γtR(st , at)

]

Practical Introduction to Safe Reinforcement Learning Kryspin Varys 8/49



Introduction to Safe RL
Open-Source Projects

Reinforcement learning is enabled by many great projects such as:

1. OpenAI’s Gymnasium 1,

1https://gymnasium.farama.org/
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1. OpenAI’s Gymnasium,

2. DeepMind’s MuJoCo 2,

2https://mujoco.org/

Practical Introduction to Safe Reinforcement Learning Kryspin Varys 10/49

https://mujoco.org/


Introduction to Safe RL
Open-Source Projects

Reinforcement learning is enabled by many great projects such as:

1. OpenAI’s Gymnasium,

2. DeepMind’s MuJoCo,

3. SUMO and Carla 3.

3https://eclipse.dev/sumo/ and http://carla.org/
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Introduction to Safe RL
Open-Source Projects

Reinforcement learning is enabled by many great projects such as:

1. OpenAI’s Gymnasium,

2. DeepMind’s MuJoCo,

3. SUMO and Carla,

4. PettingZoo and Melting Pot 4.

4pettingzoo.farama.org/ github.com/google-deepmind/meltingpot
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Introduction to Safe RL
OpenAI API (Simplified)

import gymnasium as gym
c l a s s YourEnv (gym . env ) :

...
def s t e p ( a c t i o n ) −> reward , s t a t e :

# env i ronmnent dynamics
...
return reward , s t a t e

c l a s s Agent :
...
def ac t ( reward , s t a t e ) −> a c t i o n :

# agent dynamics
...
return a c t i o n
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Introduction to Safe RL
Why Safe RL?

Agent trying to maximize an optimality criterion must be creative.

This creativity has the potential to endanger the agent or its
environment 5.

1https://www.reuters.com/article/

factcheck-ai-drone-kills-idUSL1N38023R/
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Introduction to Safe RL
What makes RL safe?6

Modifying the optimality
criterion to include safety.

Modifying the agent’s
actions to ensure safety.

6Javier Garcia and Fernando Fernandez. “A Comprehensive Survey on Safe
Reinforcement Learning”. In: J. Mach. Learn. Res. 16.1 (Jan. 2015). issn:
1532-4435.
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Scenario 1: Modification of the Optimality Criterion

Practical Introduction to Safe Reinforcement Learning Kryspin Varys 16/49



Practical Scenarios
Scenario 1: Modification of the Optimality Criterion

Markov decision process = ⟨ S,A,R : S ×A → R,T : S ×A → S ⟩

To make the agent consider safety, we modify the original reward
function R:

R̂ = R + H

where H : S ×A → R is our safety modification.

How to obtain H:

1. self-engineer it,

2. infer from some data7.

7Yueh-Hua Wu and Shou-De Lin. “A Low-Cost Ethics Shaping Approach
for Designing Reinforcement Learning Agents”. In: Proceedings of the
Thirty-Second AAAI Conference on AI. AAAI’18/IAAI’18/EAAI’18. 2018.
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Practical Scenarios
Scenario 1: Modification of the Optimality Criterion

Markov decision process = ⟨ S,A,R : S ×A → R,T : S ×A → S ⟩

maxEπ

[ ∞∑
t=0

γt (R(st , at) + H(st , at))

] R =

{
100 reaching goal
−1 otherwise

H =

{
−100 reaching water

0 otherwise
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Practical Scenarios
Scenario 1: Modification of the Optimality Criterion

Markov decision process = ⟨ S,A,R : S ×A → R,T : S ×A → S ⟩

R =

{
100 reaching goal
−1 otherwise

H =

{
−100 reaching water

0 otherwise

Trajectory 1:
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Markov decision process = ⟨ S,A,R : S ×A → R,T : S ×A → S ⟩

R =

{
100 reaching goal
−1 otherwise

H =

{
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0 otherwise
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Practical Scenarios
Scenario 1: Modification of the Optimality Criterion

Properties:

1. Safety only during the deployment phase.

2. Requires the dataset of safe behaviours.

3. We don’t need to define what “safety” means.
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Scenario 2: Modification of the Agent’s Actions
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Practical Scenarios
Scenario 2: Modification of the Agent’s Actions

Formal methods:
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Practical Scenarios
Scenario 2: Modification of the Agent’s Actions

Formal methods for reinforcement learning8:

8Mohammed Alshiekh et al. “Safe Reinforcement Learning via Shielding”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 32.1 (Apr.
2018).
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Practical Scenarios
Scenario 2: Modification of the Agent’s Actions

Markov decision process = ⟨ S,A,R : S ×A → R,T : S ×A → S ⟩

R =

{
100 reaching goal
−1 otherwise

Trajectory 1:
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Markov decision process = ⟨ S,A,R : S ×A → R,T : S ×A → S ⟩

R =

{
100 reaching goal
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Trajectory 1:
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Practical Scenarios
Scenario 2: Modification of the Agent’s Actions

Properties:

1. Keeps the agent provably safe during training and deployment.

2. The guarantee is only with respect to the transition system!

3. We must be able to come up with the transition system.

4. We must know the safety specifications.
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Thank You!
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