
Vehicle Abstraction in 
Automotive Grade Linux with 
Eclipse KUKSA

FOSDEM

February 3, 2024

Sven Erik Jeroschewski (SvenErik.Jeroschewski@bosch.com)

Scott Murray (scott.murray@konsulko.com)



whoami

2



Challenge: No standardized signals

3

Pain Points: 
● Portability
● Scalability
● Maintenance

Leading to high complexity 
and data silos



Solution: Vehicle Abstraction

4

● Portability: 
“Write once, run everywhere”

● Scalability: 
“Attract 3rd party developers”

● Maintenance: 
“Realize Synergies”



COVESA Vehicle Signal Specification 

5

Source: https://covesa.github.io/vehicle_signal_specification/introduction/overview/

https://digitalauto.netlify.app/



KUKSA.val

6

● Vehicle Computer as place to 
decouple hard- from software 
(SDV)

● Add an API to access data as VSS 
from deeply embedded systems



KUKSA.val Scope

7

● Open Source Project at Eclipse Foundation 
under Apache 2.0

● “In-Vehicle digital twin” based on VSS
● Only provide current and target view (no 

history data)
● VSS providers to transform data to VSS

Data Broker:
● Written in Rust
● < 4MB statically compiled
● language agnostic interface (gRPC):

Get, Set, Subscribe



Let’s get to the news

● KUKSA Android SDK released

● Vehicle Mock Service Available

● Leda on AGL

8



KUKSA Android SDK

9

● SDK for Android to communicate with 
KUKSA.val Data Broker
○ Available in Maven Central as 

org.eclipse.kuksa.kuksa-sdk

● Released Example Companion Application 
based on SDK to F-Droid Store

Source: https://f-droid.org/



Vehicle Mock Service

10

● Mock vehicle behavior:
○ Example: move current value for 10 seconds to 

target after it has been set
● Python script accepting behavior definition in the 

form of specific `mock.py`
● https://github.com/eclipse/kuksa.val.services/tree/

main/mock_service

https://github.com/eclipse/kuksa.val.services/tree/main/mock_service
https://github.com/eclipse/kuksa.val.services/tree/main/mock_service


mock.py - Example

mock_datapoint(
path="Vehicle.Cabin.Seat.Row1.DriverSide.Position",
initial_value=0,
behaviors=[

    create_behavior(
        trigger=create_event_trigger(EventType.ACTUATOR_TARGET),
        action=create_animation_action(
            duration=10.0,
            values=["$self", "$event.value"],
        ),
    )

],
)

11



Sneak Preview: Eclipse Leda on AGL

12



whoami #2

• Linux user/developer since 1994
• Embedded Linux developer since 2000
• Principal Software Engineer at Konsulko Group

since 2014
• Working on AGL on contract since 2016

• Yocto Project maintenance
• Demo development, integration, and maintenance

13



Automotive Grade Linux

• A collaborative open source project that is bringing 
together automakers, suppliers, and technology 
companies to build a Linux-based, open software 
platform for automotive applications

• Founded in 2014
• Currently over 150 members

• 10 major OEMs and many Tier 1 and Tier 2 suppliers
• Code first model (as opposed to specification driven)
• Used in production vehicles from Toyota and Subaru
• https://www.automotivelinux.org/

https://www.automotivelinux.org/


AGL Provides…
• A base automotive oriented Linux distribution built with 

Yocto Project (https://www.yoctoproject.org/)
• Goal of providing 70-80% of the base platform for 

production
• Focus was initially on in vehicle infotainment (IVI) targets
• Expansion into instrument cluster (IC) and telematics 

based on member interest
• Expert groups for various areas of interest, with open 

biweekly meetings
• Biannual releases (nominally February & August)

https://www.yoctoproject.org/


KUKSA.val in AGL?

• Up until 2020, a lot of AGL development went into a 
demonstration application framework
• Included CAN and higher level signal abstraction APIs

• Members indicated they were not interested in 
further effort going into the application framework
• OEMs already have frameworks in hand

• AGL shifted towards a bit more of a FOSS technology 
demonstrator model for its integration demos

• The timing aligned well with respect to the releases 
of VSS and KUKSA.val

16



KUKSA.val in AGL? (cont)

• KUKSA.val server was initially added in the Marlin 
(13.0) release in March 2022
• Replacement for previous agl-service-can-low-level and 

agl-service-signal-composer
• A BitBake recipe to build the server (and now 

databroker) is carried in the meta-agl-demo layer
• Custom AGL VSS generated by applying overlay vspec file 

on top of base VSS
• The CAN feeder is also built and packaged with a 

BitBake recipe in meta-agl-demo
• Uses CAN database (DBC) file with minimal "agl-vcar" 

CAN signal definitions

17



KUKSA.val Integration in AGL

• Magic Marlin (13.0) - Spring 2022
• KUKSA.val 0.2.1 integrated
• VSS 2.2
• Using C++ server with VIS WebSocket API
• kuksa-dbc-feeder CAN feeder for demos

• Nifty Needlefish (14.0) - Summer 2022
• Upgraded to KUKSA.val 0.2.5 and VSS 3.0

• Optimistic Octopus (15.0) - Spring 2023
• Upgraded to KUKSA.val 0.3.1 and VSS 3.1.1
• Switch to using vspec overlay with vss-tools

18



KUKSA.val Integration in AGL (cont)

• Prickly Pike (16.0) - Summer 2023
• Still using KUKSA.val 0.3.1
• Databroker included in images for evaluation and 

testing
• Using Rust 1.68 mixin layer for Yocto kirkstone

• Quirky Quillback (17.0) - Spring 2024
• KUKSA.val 0.4.2 and VSS 4.0

• 0.4.2 released by community to get a working RISC-V build of 
the databroker

• Fully switched over to the databroker
• Rust 1.70 mixin layer for Yocto kirkstone recently published

19



VSS Applications in AGL

• Pure VSS signal observers
• e.g. IC dashboard applications
• Read "sensors" in VSS terminology

• VSS signal actors
• e.g. services like agl-service-hvac
• Implement "actuators" in VSS terminology

• Some applications also set actuators
• HVAC, audio controls, navigation, etc.

20



Demo services

• agl-service-hvac
• Listens to fan speed and temperature actuator signals
• Pushes fan speed updates to HVAC controller via CAN
• Pushes temperature updates to LEDs in demo unit via 

GPIO
• agl-service-audiomixer

• Listens to VSS volume and some AGL custom audio 
control actuator signals

• Pushes changes to WirePlumber

21



Qt Demo Applications

• VSS signal using applications:
• Homescreen
• Dashboard
• IC dashboard
• HVAC
• Navigation

• Client code is abstracted in Qt library 
(libqtappfw-vehicle-signals) to reduce code 
duplication
• Originally VIS WebSocket based, now gRPC with 

databroker

22



Flutter Demo Applications

• VSS signal using applications:
• Homescreen

• Combines dashboard, HVAC, media, etc. into a unified 
application a bit more realistic with respect to current OEM 
designs

• UI designed for AGL by ICS for CES 2024
• IC dashboard

• Client code is currently duplicated in each 
application, but is not large

• Some potential for switching to using a wrapped 
non-Dart gRPC implementation, e.g. Rust's tonic
• Toyota has indicated they do something along these lines

23



24



More information

● Vehicle Abstraction with Eclipse Kuksa and Eclipse 
Velocitas - Sven Erik Jeroschewski, Bosch Digital
https://static.sched.com/hosted_files/aglammspring2023/5c/VehicleAbstracti

onwithEclipseKuksaandEclipseVelocitas.pdf
https://www.youtube.com/watch?v=LHJnBKb1Ta8

● Vehicle Signaling Specification and KUKSA.val in AGL
https://static.sched.com/hosted_files/aglammspring2023/8f/VSS%20an

d%20KUKSA.val%20in%20AGL.pdf
https://www.youtube.com/watch?v=RhSocQDu_DY

● AGL table in AW building on Sunday!

25

https://static.sched.com/hosted_files/aglammspring2023/5c/VehicleAbstractionwithEclipseKuksaandEclipseVelocitas.pdf
https://static.sched.com/hosted_files/aglammspring2023/5c/VehicleAbstractionwithEclipseKuksaandEclipseVelocitas.pdf
https://www.youtube.com/watch?v=LHJnBKb1Ta8
https://static.sched.com/hosted_files/aglammspring2023/8f/VSS%20and%20KUKSA.val%20in%20AGL.pdf
https://static.sched.com/hosted_files/aglammspring2023/8f/VSS%20and%20KUKSA.val%20in%20AGL.pdf
https://www.youtube.com/watch?v=RhSocQDu_DY


Want to start hacking? Join us @

26



Questions?

27


