
MatrixRTC: The Future of Matrix Calls

Element Call used matrixRTC under the hood for some time now

Why redesign it all?

There are already calls in matrix since ages!

Why rebuild it all?

There are already calls in matrix since ages!

There are issue, but why not fix those problems, why sth. new?

Limitations:

- By design only 1:1
- Very call specific (not designed as an infrastructure extending matrix)
- Signalling over room events (not fundamentally broken but hard to get right)

Making calls a great and central part of matrix

NeoBoard (Nordeck)

Pluggable RTC
backend

e.g. Livekit

Think beyond calls:
Expandable system
that motivates other
projects

+
Others?
(widget support EC)

Or any livekit sdk

Large, secure group
calls

Support many clients

Recap | Matrix

What matrix is really good at:

Encryption Federated
Authentication

/ Verification
Persistent

How to use those parts the best way possible for a RTC infrastructure.

Open Standard

I guess kinda a given at
FOSDEM

- Matrix

- Client (Call app)

- RTC Infrastructure

The Components of
a MatrixRTC Call

Call Member Events

- 1 User multiple
RTC memberships:

What users are
interesting for me

- App dependent
membership data:
What users are
interesting for me.

Call History

Custom event summarizing a call

- Who creates the event?
- It would be redundant data!

- How to guarantee its in sync with the call.member.events?

Call History

Join

Leave

The call.member.events can be parsed as Join and Leave events:

Call History

C
all S

tart

C
all E

nd

All member in
no session

All member in
no session

Give overview about MSCs

● New global MatrixRTC MSC
● Implementing MatrixRTC using the mesh backend MSC
● Implementing MatrixRTC using the livekit backend MSC
● Possibly have the HS setup the pc for you somehow?
●

Existing MSCs

Calls

● Native webrtc
● Most platforms have good webrtc libraries already
● m.call events (invite, candidates, answer, hangup)
● MSC2746 added events reject, select_answer, negotiate, glare handling,

hold/unhold, DTMF
● MSC3077 added stream metadata and ability to differentiate streams
● MSC3291 added the ability to mute and unmute streams

FYI

● Some lesser known facts:
○ MSC2747 and MSC3086 adds transferring calls and asserted identities
○ MSC3635 adds the ability to send early media
○ MSC4075 adds the ability to configure notifications for MatrixRTC

● Use room events for the signalling

All p2p calls use
normal room events for
signalling.

Implementing
RTC Infrastructure

The Components of a
MatrixRTC Call

- Matrix

- Client

- RTC Infrastructure

MSC3401 events

● m.call events

 "content": {

 "m.intent": "m.prompt",

 "m.type": "m.video",

 "m.terminated": "call_ended"

 },

● m.call.member events (old)
 "m.call_id": "1703868462968EbLoPCKLD3u6VgLO",
 "m.devices": [
 {
 "device_id": "SFAETNNELQ",
 "expires_ts": 1703868524905,
 "feeds": [
 {
 "purpose": "m.usermedia"
 }
],
 "session_id": "oniVyQCHzgXo"

MSC3401 and its extension

● Do you really need m.call events though? (only hold the termination state)
● Just use m.call.member events
● Ability to pass in custom backends, scopes, applications
● Use to-device events for signalling
● MSC4018 adds ability to let the homeserver/SFU manage the member events
● Matrix now only helps with the call state and encryption for the sframe

Full Mesh

● MSC2746
● MSC2747
● MSC3401
● MSC3077
● MSC3291
● MSC3635

Infrastructure
over to-device
events

MatrixRTC
foci_active: {
 "type": "mesh"
}

Livekit

MatrixRTC

Infrastructure
over websockts

foci_active: {
 "livekit_alias": "uwu",
 "livekit_service_url": "nyaa",
 "type": "livekit"
}

Livekit

● JWT service:
○ Users need to be authenticated before getting access to the SFU
○ Currently the SDKs use a combination of the OpenID API and the federation userInfo endpoint

to confirm if you are actually a user on the HS
○ In future, you would ideally also want to confirm if the user is even in the room and if they can

join the group call.
○ The jwt sends you the livekit alias and the jwt token to authenticate with

● Uses websockets for webrtc signalling

Fancy stats

● Livekit docs: A `c2-standard-16` 16 core google VM should let you have video
calls with around 150 members

● Personal server testing: Hetzner `CAX21` 4 ARM cores lets you have calls
with around 70 participants

Implementing
Ringing

Ringing

● Started as a GSoC’22 Project
● Cases:

○ Foreground
○ Background
○ Terminated

● Pivoted 3 times to get a stable way to handle ringing

Try 1: What we could have had! (ConnectionService API)

Try 2:

● Just hack it, use showOnLockScreen, appear on top and a custom flutter
screen. Does not work on terminated apps.

Try 2:

● Just hack it, use showOnLockScreen, appear on top and a custom flutter
screen. Does not work on terminated apps.

Try 3:

● Oh, push notifications, they already start the right flutter bits to decrypt stuff,
yes we can just flutter engine started by those push plugin job workers!

● iOS still needs work and afaik the only possible way to do this there is using
CallKit.

MSC4075 for call notifications

● Using intentional mentions and push rules
to do rings instead of call invites

● Event type `m.call.notify` has metadata and
instructs client how to ring on stuff

● Completely independent of the calls, can be
used to signal users about calls even
before the call.

{
 "content": {

"application": "m.call | m.other_session_type…",
"m.mentions": {"user_ids": [], "room": true | false},
"notify_type": "ring | notification",
// Application specific data,
// optional fields to disambiguate which session
// this notify event belongs to:
// for application = "m.call":
"call_id": "some_id",

 }
}

Implementing
SFrame key sharing

SFrames

● SFUs need another lock on top of SRTP/DTLS
● We use SFrames, most of the browsers supp
● Could do key sharing over room events or to-device events

SFrames key sharing contd…

● Key sharing happens on leave/join
● But we also implement a pull/push feature to request and send keys.

○ call.encryption_keys event for key details
○ call.encryption_keys.request event for requesting a key (remember to do the necessary

checks before sending a key)

Implementing
Cascading

Cascading

● As of today livekit calls are “in vibe” federated.
● You can have multiple calls in the same room each with a different SFU
● The livekit SFUs are currently mandate all the participants in a call to be on

the same SFU
● In future each participant could bring their own cascading SFU and everything

would just work (maybe even cross SFU!), f.ex:
○ Device 1: cascading sfu 1
○ Device 2: cascading sfu 2
○ Device 3: cascading sfu 3

● The jwt service could also finer control. Currently the server only validates
that the oidc token is from a valid user

How you can implement this

● Widget (Matroska ElementCall)
○ Any client which supports the widget api can

get MatrixRTC calls for free
○ The rust SDK and the react sdk already

support widgets

● Native livekit sdk f.ex the dart client sdk

DEMOS
Showing the two implementation paths

- Changes for fosdem interop
- create_ts + expires + membershipID -> expire_ts. (Mandatory) (DONE)
- call_id should be empty, if m.room.
- backend should be renamed to foci_active. (Mandatory)
- we wont demo an encrypted call.
- Use oldest member sfu (low prio for the demo)

- Topics:
- What we had upto now (TD)
- The vision of matrixRTC (google docs/whiteboard/real-time games/security cam,webcam) (Timo)
- Livekit as the backend (full mesh as of 3401) (Timo)
- Timeline Rendering, but keep it short (Timo)

- Compute based on Member event history.
- Let the SFU create timeline events.

- Ringing Spec (Timo || TD)
- Ringing Impl (TD)
- Encryption. (TD)

- to-device events vs room events.
- Cascading (TD)

- Start with stricter sfu access control
- Implementation Strategies:

- Widget
- really easy to adopt for other clients -> webview shows calling view of a room (multi platform thanks to web

stack)
- More borders for device permissions

- Native (example: Flutter)
- Can be used in other flutter apps. (multi platfrom thanks to flutter)

- Current challenges (Timo)
- Historic session data
- Member event permissions (we need one state event for all devices)
- Member event update always comes from clients - crashes don’t result in dicsonncts (HS or SFU membership control)

- Demos:
- Show call interoperability between element call and fluffychat/famedly. (both)
- Calling between devices of the same user. (switch from device to device (continuity)). (TD)
- Ringing (foreground, background, terminated). (TD)

http://m.room

