
Know Your Ingredients: Security Starts
With the SBOM

Stephen Chin, VP of Developer Relations @ JFrog

stevec@jfrog.com

mailto:stevec@jfrog.com

2

Great Cooking Starts with Fresh Ingredients!

But What
Happens
When you
Start with
Spoiled
Ingredients?

These Aren’t the Free Range Chickens You
Are Looking For…

Healthy Food
Requires a
Clean Supply
Chain

Secure Releases Require a Clean
Supply Chain

SBOMs Provide a Trusted Ingredient List

●~70,000 open-source projects use
log4j as a direct dependency
●~ 174,000 use it as a transitive

dependency

●18,000 customers received
an update that included
malicious code with a
backdoor
●Compromised file was digitally

signed!

The global average cost of a data breach in 2023 was
USD 4.45 million, a 15% increase over 3 years.

Cost of a Data Breach Report 2023, IBM

Which of these
is your
package?

DEPENDENCY
CONFUSION
ATTACK

DEPENDENCY CONFUSION ATTACK
PACKAGE MINING

13

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

DEPENDENCY CONFUSION ATTACK
CONFUSION

14

AwesomeCorporateLib 1.2

AwesomeCorporateLib 6.6.6

Vulnerable
Package
Manager

Developer CI/CD

???

DEPENDENCY CONFUSION ATTACK
CONFUSION

15

AwesomeCorporateLib 1.2

AwesomeCorporateLib 6.6.6

Vulnerable
Package
Manager

Developer CI/CD

!!!

DEPENDENCY CONFUSION ATTACK
CONFUSION

16

AwesomeCorporateLib 1.2

AwesomeCorporateLib 6.6.6

Vulnerable
Package
Manager

Developer CI/CD

???

DEPENDENCY CONFUSION ATTACK
CONFUSION

17

AWESOMECORPORATELIB 1.2

AWESOMECORPORATELIB 6.6.6

DEVELOPER CI/CD

X

DEPENDENCY CONFUSION
ATTACK

Alex Birsan

130,000 USD

The recipe called for rice,
but what type?

CORE - TRACING

20

21

▪ At least 218 packages affected

▪ @azure, @azure-tests, @azure-tools, and @cadl-lang targeted

▪ Exfiltrates personal information from developer machines

But how can you do this
when you start with rotten

ingredients?

Managing Open Source Dependencies

Attribution: https://xkcd.com/2347/

The Left-Pad Incident

1.Developer and kik organization couldn’t come to an

agreement on an npm package named kik

2.npm sided with the kik organization

3.Developer unpublished his kik package and 272 other

packages! One of these was left-pad

Cameron Westland stepped in and published a
functionally identical version of left-pad. v1.0.0, but many
projects were explicitly requesting v0.0.3

The Left-Pad Incident

Tuesday, March 22, 2016

2:30 PM Pacific Time
module.exports = leftpad;
function leftpad (str, len,
ch) {
 str = String(str);
 var i = -1;
 if (!ch && ch !== 0) ch = '
';
 len = len - str.length;
 while (++i < len) {
 str = ch + str;
 }
 return str;
}

How Safe Is
Your Secret
Recipe?

EXPOSED
SECRETS

IN
CENTRAL

REPOS

Mistake #1 – Not using automation to
check for secret exposures

A GitHub token leaked in documentation, intended as read-
only but in reality gave full edit permissions

TruffleHog

Mistake #2 –
Generating tokens
with broad
permissions that
never expire

Mistake #3 – No access moderation for the secret

• Kubernetes secrets (for k8s-based applications)

• Docker secrets (for Docker Swarm services)

• Requiring the user to supply the secret as a docker run argument

• Hashicorp Vault (external toZol suitable for many runtime environments)

https://kubernetes.io/docs/tasks/inject-data-application/distribute-credentials-secure/
https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/reference/commandline/run/
https://www.vaultproject.io/

Mistake #4 – Fixing a
leak by unpublishing
the token

• Secret tokens leaked in an .env file in version 1.1.1 of a package.
“Fixed” by unpublishing on version 1.1.2

Mistake #5 – Exposing unnecessary assets publicly

To safely use Open Source we need standards

OpenSSF Scorecard

Can We Trust the Machines
With Our Ingredients?

ML MODELS? YET ANOTHER MALICIOUS PACKAGE!

ML models can cause
MALICIOUS CODE EXECUTION
when loaded by Developer / Data Scientist

Public repositories
for models ARE NOW A TARGET

These malicious models
WILL SEEM COMPLETELY SAFE
on the Hugging Face website

A SUPPOSEDLY LEGITIMATE MODEL - JUST
DATA, RIGHT?

YET WHEN THE MODEL LOADS, MALICIOUS CODE EXECUTES

import tensorflow as tf

from keras.preprocessing import image

from keras.models import load_model

import numpy as np

Load the model

model = load_model('vgg16_light/tf_model.h5')

img =

image.load_img("./cat.jpeg",target_size=(224,224))

img = np.asarray(img)

img = np.expand_dims(img, axis=0)

output = model.predict(img)

if output[0][0] > output[0][1]:

print("cat")

else:

print('dog')

HOW? MALICIOUS CODE IS HIDDEN IN THE
BINARY DATA

Open AI
ChatGPT

Package + Repository

Attacker

3. Publish malicious package

1. Question

2. Answer with nonexistent package

5. Answer w/
malicious package

name
4. Question

Developer

6. npm install

7. Malicious code executes

AI PACKAGE HALLUCINATION

ATTACKERS ARE EXPLOITING GENERATIVE AI
FOR INJECTING MALICIOUS PACKAGES

NOW EVEN GENERATIVE AI INTRODUCES SECURITY
VULNERABILITIES!

Write an endpoint that returns a file from user input

@app.route("/file/<filename>")

def file(filename):

return open(filename, "r").read()

Requesting generation of an endpoint that returns file contents

The generated code is vulnerable to path traversal -
?filename=../../../../etc/passwd

Requesting generation of a secure endpoint also doesn’t help

Write a secure endpoint that returns a file from user

input and prevents directory traversal

@app.route("/secure_file/<filename>")

def secure_file(filename):

normalized_path = os.path.normpath(filename)

return open(normalized_path, "r").read()

Still vulnerable…
What about ?filename=/etc/passwd

● JFrog recently added support for Hugging Face model security scanning

● Hugging Face is one of the biggest ML repositories, hosting ~480K models
● Kaggle has the largest AI/ML community, 16M+ users

● Part of our effort to discover new avenues for supply chain attacks

● We ran our custom malicious ML detectors on 95%+ of HF & Kaggle models
○ Same detectors used in Xray

STATE OF MALICIOUS ML MODEL ATTACKS

● JFrog identified 60+ models which contained malicious behavior & analyzed their
payload

● Most models contained non-truly-malicious payloads (bug bounty, research teams)

● Will share full details about the truly malicious payloads in an upcoming blog

OVERVIEW MALICIOUS ML DETECTIONS

RESEARCH.JFROG.COM

45

http://research.jfrog.com/

Together we
can create a
healthy
software
supply chain!

Stephen Chin
stevec@jfrog.com

mailto:stevec@jfrog.com

Together we
can create a
healthy
software
supply chain!

Stephen Chin
stevec@jfrog.com

mailto:stevec@jfrog.com

	Slide 1: Know Your Ingredients: Security Starts With the SBOM
	Slide 2
	Slide 3: But What Happens When you Start with Spoiled Ingredients?
	Slide 4: These Aren’t the Free Range Chickens You Are Looking For…
	Slide 5: Healthy Food Requires a Clean Supply Chain
	Slide 6: Secure Releases Require a Clean Supply Chain
	Slide 7: SBOMs Provide a Trusted Ingredient List
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Which of these is your package?
	Slide 12: DEPENDENCY CONFUSION ATTACK
	Slide 13: DEPENDENCY CONFUSION ATTACK PACKAGE MINING
	Slide 14: DEPENDENCY CONFUSION ATTACK CONFUSION
	Slide 15: DEPENDENCY CONFUSION ATTACK CONFUSION
	Slide 16: DEPENDENCY CONFUSION ATTACK CONFUSION
	Slide 17: DEPENDENCY CONFUSION ATTACK CONFUSION
	Slide 18: DEPENDENCY CONFUSION ATTACK Alex Birsan 130,000 USD
	Slide 19: The recipe called for rice, but what type?
	Slide 20: CORE - TRACING
	Slide 21
	Slide 22: But how can you do this when you start with rotten ingredients?
	Slide 23: Managing Open Source Dependencies
	Slide 24: The Left-Pad Incident
	Slide 25: The Left-Pad Incident
	Slide 26
	Slide 27: How Safe Is Your Secret Recipe?
	Slide 28: EXPOSED SECRETS IN CENTRAL REPOS
	Slide 29: Mistake #1 – Not using automation to check for secret exposures
	Slide 30: Mistake #2 – Generating tokens with broad permissions that never expire
	Slide 31: Mistake #3 – No access moderation for the secret
	Slide 32: Mistake #4 – Fixing a leak by unpublishing the token
	Slide 33: Mistake #5 – Exposing unnecessary assets publicly
	Slide 34: To safely use Open Source we need standards
	Slide 35: OpenSSF Scorecard
	Slide 36: Can We Trust the Machines With Our Ingredients?
	Slide 37: ML MODELS? YET ANOTHER MALICIOUS PACKAGE!
	Slide 38: A SUPPOSEDLY LEGITIMATE MODEL - JUST DATA, RIGHT?
	Slide 39: YET WHEN THE MODEL LOADS, MALICIOUS CODE EXECUTES
	Slide 40: HOW? MALICIOUS CODE IS HIDDEN IN THE BINARY DATA
	Slide 41: ATTACKERS ARE EXPLOITING GENERATIVE AI FOR INJECTING MALICIOUS PACKAGES
	Slide 42: NOW EVEN GENERATIVE AI INTRODUCES SECURITY VULNERABILITIES!
	Slide 43
	Slide 44
	Slide 45: RESEARCH.JFROG.COM
	Slide 46: Together we can create a healthy software supply chain!
	Slide 47: Together we can create a healthy software supply chain!

