
Container Storage Interface Addons: Extending CSI specification to provide
advanced storage operations

Rakshith R
Software Engineer @ IBM
Maintainer @ CephCSI & CSI-Addons
Core Contributor @ Rook
https://github.com/Rakshith-R
https://in.linkedin.com/in/rakshith-r

https://github.com/Rakshith-R
https://in.linkedin.com/in/rakshith-r

Agenda
● Container & Container Orchestration
● In-Tree Storage Drivers
● CSI
● CSI Deployment
● CSI-Addons
● CSI-Addons Deployment
● CSI-Addons: Reclaim Space Operation
● CSI-Addons: Network Fence Operation
● CSI-Addons: Volume Replication Operation
● Future Roadmap
● References

Container & Container Orchestration

● Container:
○ A container is a standard unit of software

that packages up code and all its
dependencies so the application runs
quickly and reliably from one computing
environment to another.

○ They are portable, lightweight, secure and
widely used.

● Container Orchestration:
○ Container orchestration automates the

deployment, management, scaling, and
networking of containers.

○ Popular Container Orchestration Platforms:
■ Kubernetes
■ Docker Swarm
■ Apache Mesos
■ Nomad

In-Tree Storage Drivers
● Container Orchestrators realised the need for persistent storage for stateful applications.

● Storage Drivers were used to provide access to persistent storage for containers.

● These Storage Drivers were “in-tree”, they were part of each CO’s codebase and shipped with

the core CO’s binaries.

● This had a lot of disadvantages:

○ Storage Vendors (SV) had to write different volume plugins for each CO.

○ SVs were forced to align with the CO’s release process even for bug fixes.

○ Third-party storage code caused reliability and security issues in core CO’s binaries.

○ It was often difficult (and in some cases impossible) for CO’s maintainers to test and maintain

plugin code.

CSI
● Container Storage Interface (CSI) was proposed as a

solution to problems faced by in-tree volume plugins.
● CSI Specification defines APIs (RPCs) to enable:

○ Dynamic provisioning and deprovisioning of a
volume.

○ Mounting/unmounting a volume from a node.
○ Creating and deleting a snapshot.
○ Provisioning a new volume from a snapshot.

● SVs now had to develop only a single CSI Driver and it
would work across a number of container
orchestration (CO) systems.

CSI Deployment
A CSI Driver Consists of :

● Provisioner Deployment :
○ For Volume/Snapshot Creation, Expansion and Deletion.
○ It contains CSI Driver, external provisioner, external snapshotter, external attacher

and external resizer containers.
○ Usually deployed with count two and leader election enabled for HA.

● Nodeplugin Daemonset :
○ For Volume Mounting and Unmounting.
○ It contains CSI Driver and node driver registrar containers.
○ Deployed one per node.

CSI Deployment
Kubernetes Services

Node(s)

Pod

Kubelet

CSI driver
Nodeplugin (DaemonSet)

Ceph

Pod

Node

Kubelet

CSI driver Provisioner
(Deployment)

csi-provisioner

csi-resizer

csi-attacher

csi-snapshotter

csi-plugin

driver-registrar

csi-plugin

Pod
Pod

API Server

Controller Manager

Snapshot Controller
...

CSI-Addons hosts the extensions to the CSI specification that
provides advanced storage operations.

Various components involved:
● CSI-Addons Specification

○ Defines APIs (RPCs) to provide:
■ Identity service
■ Reclaim Space service
■ Network Fence service
■ Volume Replication service

● CSI-Addons Controller
○ Watches and responds to Custom Resources.
○ Connects to Sidecar and sends operation requests.

● CSI-Addons Sidecar
○ Advertises its presence to the controller.
○ Relays requests from Controller to the CSI Driver.

UserCSI-Addons
Controller

CR

CSI-Addons
Sidecar

CSI Driver
Provisioner/
Nodeplugin

gRPC

gRPC

CSI-Driver Pod

CSI-Addons

CSI-Addons Deployment
Kubernetes Services

Node(s)

Pod

Kubelet

CSI driver
Nodeplugin (DaemonSet)

Ceph

Pod

Node

Kubelet

CSI driver Provisioner
(Deployment)

csi-provisioner

csi-resizer

csi-attacher

csi-snapshotter

csi-plugin

driver-registrar

csi-plugin

Pod Pod

API Server

Snapshot Controller
...

csi-addons-sidecar

csi-addons-sidecar

Controller Manager

CSI-Addons Controller

● Reclaim Space operation executes
○ ONLINE operation: This operation is run from CSI Driver on the node where

the volume is mounted. For example: `fstrim` on filesystem mode volumes.
○ OFFLINE operation: This operation is forwarded to the leader CSI Driver which

supports it and can be executed regardless of volume is mounted or not. For
example: `rbd sparsify` run on a rbd volume.

● This enables storage admins to have accurate view of storage consumption in a
cluster.

CSI-Addons: Reclaim Space Operation

● Network Fence operation provides an API for
blocking a list of given CIDR IP ranges.

● This plays a critical role in Metro Disaster
Recovery and Node-Loss scenarios.

CSI-Addons: Network Fence Operations

Volume Replication Operation
● Volume Replication operation provides common

and reusable APIs for storage disaster recovery.
● It allows enabling/disabling mirroring and

changing state(primary/secondary) of rbd mirrored
images.

● The volume replication operation automates
rbd-mirroring, allowing promote, demote, resync
and get volume replication information operations
on rbd images.

● This plays a critical role in Regional Disaster
Recovery.

CSI-Addons: Volume Replication Operation

● Rotation of Key Encryption Keys(KEKs) for encrypted volumes.
● Volume Group Replication.
● Repairing corrupted Filesystem.

CSI-Addons: Future Roadmap

● Container Storage Interface (CSI) Specification.
● CSI-Addons · GitHub
● GitHub - csi-addons/spec: Storage Provider extensions to the CSI Specification
● CSI-Addons implementation and APIs for Kubernetes
● CSI driver for Ceph
● GitHub - rook/rook: Storage Orchestration for Kubernetes

References

https://github.com/container-storage-interface/spec
https://github.com/csi-addons
https://github.com/csi-addons/spec
https://github.com/csi-addons/kubernetes-csi-addons
https://github.com/ceph/ceph-csi
https://github.com/rook/rook

