
Alex Auvolat <alex@adnab.me>
Deuxfleurs https://deuxfleurs.fr
FOSDEM 2024

A microkernel-based orchestrator
for distributed Internet serivces?

Distributed system self-hosting

Low-cost, low-power, second-hand hardware
running the Deuxfleurs infrastructure

Servers in several geographical locations
for redundancy

Our current stack

etc...

Distributed operating system?

OS Platform Storage services
Applications

Device
drivers
(can crash
your system)

Networking
(huge mess of
shared state)

Bolted-on
isolation
mechanisms
(cgroups, ...)

Deep dive into this horrible mess

Monolithic kernel

Filesystems
(too complex)

IP networking (??)

All concurrently trying
to mutate some shared state

All running with
highest privilege
level on your CPU

Containers (isolation that doesn't really work)

Stuff is slow, easily broken, and hard to work on

Distributed systems are boxes connected by arrows

public
internet

configuration
database

LAN / WAN

VPN for
internal
traffic

applications

distributed
storage

distributed sql

local storage

https

http

http

ip

ip

ip

sql

s3

block
storage

ip

k/v api

reverse
proxy

block
storage

Microkernels would work

looks like a match !

boxes = processes (incl. device drivers)

arrows = IPC (of various kinds)

what microkernels do:

- manage processes
 -> address space isolation = memory management
 -> cpu time sharing = scheduling
 -> controlled hardware access
 = multiplexing of fundamental CPU resources

- various IPC mechanisms
 -> message passing
 -> shared memory + semaphores

disk
driver

disk
multiplexing
(partitions)

network
multiplexing
(vswitch)

application 2
(tiny linux vm)

etc.

What this could look like

ethernet
driver

application 1
(unikernel)

Microkernel

orchestrator

os component,
e.g. VPN
(native process)

- tooling and ecosystem

What we need

arrow types:

management APIs
observability (e.g. logging)
block storage
networking

- a way to describe boxes and their connections dynamically
 = an orchestrator

- some standard box and arrow types

box types:

hardware drivers
resource multiplexers
orchestration & mgmt components
native components
VM apps (unikernels, tiny linux vms)

Goals and non-goals

Main focuses:

- declarative configuration

- remote management and observability

- clustering support & dynamic reconfiguration

- I/O performance (async I/O all the way)

- simplicity & minimalism

Non-goals:

- POSIX API compatibility

- desktop operating system

Leveraging the existing

microkernels I/O models

L4 / seL4

NOVA

Fuschia

...

VirtIO

io_uring

9P

...

frameworks & OSes

Genode

Redox OS

GNU Hurd

...

Where to start from?

