
Using linux-yocto as
a Yocto BSP kernel
Managing your BSP kernel in a different way

Dmitry Baryshkov
mailto:dmitry.baryshkov@linaro.org

mailto:dmitry.baryshkov@linaro.org

About me
● OpenEmbedded contributor since 2007

○ … and even remembers OpenZaurus
● Linux kernel contributor since 2007

○ Around 2200 commits
● worked with Linaro in 2017-2019, joined back in 2020

○ A part of Qualcomm Ecosystem Team
● meta-qcom leading developer since 2020

○ Maintainer since 2023

Typical OE BSP
From the Linux Kernel point of view

linux-awesome-bsp
● Custom bb recipe in vendor’s BSP layer

linux-awesome-bsp
● Custom bb recipe in vendor’s BSP layer
● SRC_URI pointing to vendor’s Git tree

○ Which might track development history
○ … or it might not
○ “Revert fix for the fix for the commit”
○ Was this patch ever shown to upstream developers?
○ LTS version if you are lucky
○ Security updates if you are extremely lucky

linux-awesome-bsp
● Custom bb recipe in vendor’s BSP layer
● SRC_URI pointing to vendor’s Git tree

○ Which might track development history
○ … or it might not
○ “Revert fix for the fix for the commit”
○ Was this patch ever shown to upstream developers?
○ LTS version if you are lucky
○ Security updates if you are extremely lucky

● kernel config
○ usually a file under the same git tree
○ … or a config file in the layer
○ Anyway, good luck modifying it in a simple but future-proof way

linux-awesome-bsp
● Custom bb recipe in vendor’s BSP layer
● SRC_URI pointing to vendor’s Git tree

○ Which might track development history
○ … or it might not
○ “Revert fix for the fix for the commit”
○ Was this patch ever shown to upstream developers?
○ LTS version if you are lucky
○ Security updates if you are extremely lucky

● kernel config
○ usually a file under the same git tree
○ … or a config file in the layer
○ Anyway, good luck modifying it in a simple but future-proof way

But everybody does it this way?!

linux-yocto kernel

linux-yocto kernel recipe
● The kernel recipe used by OE-Core for the QEMU targets
● Also BSP for several standard platforms
● Follows linux-stable releases
● Tracks the latest released kernel and LTS kernels
● Has very powerful kernel configuration framework (scc)
● Endorsed by YoctoProject Compatible Layer

linux-yocto kernel recipe
● The kernel recipe used by OE-Core for the QEMU targets
● Also BSP for several standard platforms
● Follows linux-stable releases
● Tracks the latest released kernel and LTS kernels
● Has very powerful kernel configuration framework (scc)
● Endorsed by YoctoProject Compatible Layer

Sounds perfect, doesn’t it?
But nobody uses it. Almost.

linux-yocto kernel recipe
● The kernel recipe used by OE-Core for the QEMU targets
● Also BSP for several standard platforms
● Follows linux-stable releases
● Tracks the latest released kernel and LTS kernels
● Has very powerful kernel configuration framework (scc)
● Endorsed by YoctoProject Compatible Layer

Sounds perfect, doesn’t it?
But nobody uses it. Almost.

We do. Now!

HOWTO
meta-qcom implementation

Entry points
● linux-yocto_%.bbappend

Configuration gets assembled from ‘scc’ and ‘cfg’ files
And you add more in your layers using this BSP!

Defer -stable tracking to linux-yocto maintainers (Thank you, Bruce!)

do not override KBRANCH and SRCREV_machine, use defaults
COMPATIBLE_MACHINE:qcom = "qcom-armv8a"
FILESEXTRAPATHS:prepend:qcom := "${THISDIR}/${PN}:"

include all Qualcomm-specific files
SRC_URI:append:qcom = " \
 file://qcom.scc \
"

Entry points
● linux-yocto_6.6.bbappend

Now each patch MUST have ‘Upstream-Status’ trailer!
History is no longer lost when somebody switches Git branches

SRC_URI:append:qcom = " \
 file://0001-arm64-dts-qcom-disable.patch \
 file://qca6390-driver/0001-dt-bindings-mfd-qcom.patch \
 file://qca6390-driver/0002-mfd-qca639x-add-support.patch \
 file://qca6390-driver/0003-mfd-qcom-qca639x-switch.patch \
…
"

Config fragments
● recipes-kernel/linux/linux-yocto/qcom.scc

○ empty file, triggers inclusion of other files
● recipes-kernel/linux/linux-yocto/bsp/qcom-armv8a/qcom-armv8a.scc

kconf hardware qcom.cfg

include qcom-sdm845.scc
include qcom-sm8250.scc

include standard features and config fragments
include features/i2c/i2c.scc
include features/power/arm.scc

include cfg/timer/rtc.scc
include cfg/dmaengine.scc

Config fragments
● recipes-kernel/linux/linux-yocto/bsp/qcom-armv8a/qcom.cfg

● recipes-kernel/linux/linux-yocto/bsp/qcom-armv8a/qcom-sdm845.scc

● etc.

CONFIG_ARCH_QCOM=y
CONFIG_ARM_PSCI_CPUIDLE=y

CONFIG_MOUSE_PS2 is not set
CONFIG_KEYBOARD_ATKBD is not set
CONFIG_KEYBOARD_GPIO=y

kconf hardware qcom-rpmh.cfg
kconf hardware qcom-sdm845.cfg

Downsides
● No control over the exact kernel version
● Sometimes linux-yocto kernels get delayed a bit
● Additional patches on top of the Linux release tag

● Development becomes more complicated
● Reponsibilities shift onto OE layer maintainers

● What if we have several hundred of BSP patches?

Links
● https://git.yoctoproject.org/linux-yocto/
● https://git.yoctoproject.org/yocto-kernel-cache/

● https://github.com/Linaro/meta-qcom/

● https://www.linaro.org/services/
● https://mastodon.social/@LinaroLtd

○ We are hiring!

https://git.yoctoproject.org/linux-yocto/
https://git.yoctoproject.org/yocto-kernel-cache/
https://github.com/Linaro/meta-qcom/
https://www.linaro.org/services/
https://mastodon.social/@LinaroLtd

Thank you

