
Are Project Tests Enough for
Automated Dependency Updates?

A Case Study of 262 Java Projects on Github

Joseph Hejderup
04-02-2024

Member of Technical Staff, Endor Labs, Inc.
PhD Candidate, TU Delft, the Netherlands

Main Interests:

- Scaling Program Analysis
- Software Supply Chain Security

Tests

New Release

Build

Pull Requests

Automated Dependency Updates

4

Automated Dependency Updates

Avoid Regressions?

1. Do we even write tests against
dependencies in the first place?

2. Do project test suites even
cover usages of dependencies in
the source code?

3. Are tests sufficient alone for
detecting bad updates?

Q: Should we write tests for dependencies/third-party libraries?

Test Suites + Third-Party Libraries

- What is the statement coverage of function
calls to dependencies?

- How effective are test suites in detecting
updates with regression errors?

- How does static analysis complement/compare
to test suites in updating dependencies?

Empirical Study

❏ Direct Dependencies: Extract call sites of third-party
libs in bytecode

❏ Transitive Dependencies: Static Call Graph to infer
call paths to transitive call sites

❏ Instrumentation: Instrument functions belonging to
dependencies and record their execution

Direct & Transitive Dependencies

wala/WALAasm/asm

Statement Coverage: How?

60%

median coverage
of direct
dependencies

20% median
coverage of
transitive
dependencies

Updates on untested code!

521 GH Projects having tests

Statement Coverage

Does this matter at all?

Mutation testing!

def add(x,y):
return x + y

def add(x,y):
return x - y

Arithmetic Mutation

We use PITest with a twist: We don’t mutate all
dependency functions; only those reachable by tests!

Test Effectiveness: How?

bar(y) {

- x = y--
+ x = y++
}

baz() {

+ qux(str)
}

Diffing

bar() ￫ Arithmetic (df)
baz() ￫ Method call (cf)

 v1.0.2 v1.0.3

main(y)

json_size(y)

validate_json()

baz()

foo(c)

stats_json(l)

sysperf_log()

syslog_size()

Call Graph Generation

bar(y)

jhejderup/Uppdatera

Reachability Analysis

main(y)

baz()

stats_json(l)

sysperf_log()

syslog_size()

bar(y)

qux(str)

67%
impacted
paths
@@@@@@@
++ baz()
-- bar()
@@@@@@@

CHA algorithm

Change Impact Analysis as an alternative!

Uppdatera

13

Behavioural Changes: Data-flow and Control-flow changes!

How to deal with Semantic Changes?

14

Change Impact Analysis as an alternative!

Uppdatera

Test Effectivies

On average,

37% detected by tests!

72% detected by

Uppdatera!

No guarantees that tests can prevent bad updates!

1 Million artificial updates on 262 GH Projects

❏ Discovered 3 unused dependencies

❏ Prevented 3 breaking updates (one
confirmed!)

❏ 6 cases as false positives (~31%).
Tests: 13%
❏ Refactorings
❏ Over-approx call paths

Uppdatera can prevent updates but it is prone to false positives!

Static Analysis Useful?
Manual Investigation on 22 Dependabot PRs

❏ Confidence Score
❏ How reliable is my test suite for a particular library?
❏ Indication on where to direct test efforts

❏ Gaps in Test Coverage
❏ Complement with Static Analysis
❏ Catch early errors without running build/tests

Recommendations
Tool Makers

❏ Reuse is “free” but the operational/maintenance costs
are not “free”

❏ Should not blindly trust automated dependency
updates—I guess no one does this :D

❏ Write tests for critical dependencies

Recommendations
Users of Automated Updating

Want to know more?
https://doi.org/10.1016/j.jss.2021.111097 (Open Access)

https://doi.org/10.1016/j.jss.2021.111097

