
Libamicontained - a 
library for reasoning 
about resource restriction

Fosdem 2024tandersen@netflix.com & sdabdoub@netflix.com
Repo: https://github.com/Netflix/libamicontained

mailto:tandersen@netflix.com
mailto:sdabdoub@netflix.com
https://github.com/Netflix/libamicontained


How many (and which) CPUs do I have?



How do we do it today?

● So many interfaces
○ isol_cpus= kernel command line
○ /sys/devices/system/{cpu,memory}/online
○ /proc/stat, /proc/cpuinfo

■ lxcfs
○ sched_getaffinity()

● What’s missing?
○ Cgroup info
○ Cfs quota



Hard to answer

● tcmalloc: https://github.com/google/tcmalloc/issues/188
○ segfaults on non-sequential cpu assignments

● JVM’s implementation
○ https://bugs.openjdk.org/browse/JDK-8322420
○ Queries cpuset.cpus (not .effective)
○ No .effective for memory, must recurse up the tree
○ 2CPU jobs with 384G heaps
○ https://stackoverflow.com/questions/75327454/how-do-i-read-the-effective-cgroups-limits-for-t

he-current-process-using-sys-fs/77234728#77234728 

https://github.com/google/tcmalloc/issues/188
https://bugs.openjdk.org/browse/JDK-8322420
https://stackoverflow.com/questions/75327454/how-do-i-read-the-effective-cgroups-limits-for-the-current-process-using-sys-fs/77234728#77234728
https://stackoverflow.com/questions/75327454/how-do-i-read-the-effective-cgroups-limits-for-the-current-process-using-sys-fs/77234728#77234728


Hard to answer (even more)

● (g)libc (aka nprocs, sysconf(NPROC_ONLIN))
○ Used to use /sys/devices/system/node, switched to sched_getaffinity()

https://sourceware.org/bugzilla/show_bug.cgi?id=15630
○ Used by lots of libraries (e.g. jemalloc) to reason about memory arena counts, incorrect 

number of memory arenas wastes memory
○ Florian Weimer “Should be done by the kernel” 

https://bugzilla.kernel.org/show_bug.cgi?id=151821
● Musl

○ sched_getaffinity()

https://sourceware.org/bugzilla/show_bug.cgi?id=15630
https://bugzilla.kernel.org/show_bug.cgi?id=151821


Hard to answer (still more)

● libuv (nodejs)
○ Looks at /proc/stat, /proc/cpuinfo https://github.com/libuv/libuv/issues/2351

● lxcfs renderings incorrect in /proc/stat, /sys/devices/system/cpu
○ https://github.com/lxc/lxcfs/pull/557 
○ https://github.com/lxc/lxcfs/pull/558
○ Causing crashes in libuv, jvm
○ cpu_view feature to reason about cfs shares/quota

https://github.com/libuv/libuv/issues/2351
https://github.com/lxc/lxcfs/pull/557
https://github.com/lxc/lxcfs/pull/558


Where should this computation live?

● Nowhere
● Container runtime

○ Traditional
● Kernel: mechanism not policy

○ Mechanisms exist! Lots of them!
○ sched_ext would mean the algorithm itself is dynamic

● Userspace: one place so people don’t have to reimplement
○ No dependencies (golang doesn’t want libc, etc.)
○ Small
○ Correct



libamicontained

● An cgroup/container aware API for getting resources (i.e. cpu count).
● Consolidates well known algorithms for calculating cpu count from cgroup 

controllers
● Statically linked, c ABI, written in rust for safety.
● Meant to be used by language runtimes and applications in place of syscalls 

or /proc files.
● repo: https://github.com/Netflix/libamicontained

https://github.com/Netflix/libamicontained


Why do runtimes ask?

● mostly to size thread pools/GC threads
● Size arenas/allocators



What can go wrong (example)

● 10 containers requesting on a host
● Host has 100 cpus, each container has 10% cfs quota
● containers see 100 cpus, create 100 threads
● Each bursts through all of quota in first time quantum

○ Or starve their own threads



How to compute the answer?

● num_cpus() - expected sched_getaffinity call. Takes into account cpusets, 
affinity mask, online cpus, etc.

● recommended_threads() - num_cpus() further constrained by cgroup CFS 
quota (i.e. threads = quota/period). Similar to systemd and lxcfs calculation.



Example with recommended_threads()

● 10 containers requesting on a host
● Host has 100 cpus, each container has 10% cfs quota
● containers see 10 cpus, create 10 threads
● All is well ;)



Prior art

● Runtime implementations
○ Sometimes incorrect :)

● Lxcfs
○ Can only do file-based masking
○ Could add some seccomp fixing of sched_getaffinity()

● Libresource
○ Not container aware
○ Pairs well with lxcfs endpoints



A step further…

● In a container world with quota+shares, cpu count is not static
○ “Core equivalent” computation of quotas
○ May get the whole box then throttled
○ Unused CPU time is lost
○ Allowed to change cgroup/cpus on live process, nothing takes that into account

● Why not have dynamic threadpools?
○ Not the way it works today



Merci!

Fosdem 2024tandersen@netflix.com & sdabdoub@netflix.com

mailto:tandersen@netflix.com


Question: how to integrate?

● Integrate with libresource?
● .a? .so? Other interfaces?


