DIVA.EXCHANGE
DNS for I2P: a Distributed Network without Central Authority

Creating a DNS for an Overlay Network without a Central Authority

Author: Konrad Bächler
Twitter: @DigitalValueX, Web: https://diva.exchange
Agenda

- Concept of the I2P network (7')
- Motivation: Why DNS for I2P on DIVAchain (3')
- Concepts and Context (5')
- Byzantine Fault Tolerance as consensus (5')
- The Good & the Bad since FOSDEM '23 (5')
- Discussion/Feedback (5')
About diva.exchange

- Non profit association, open to everyone
- A loose bunch of Devs & Researchers - spread all over the world
- «DIVA - Free Banking Technology for Everyone» means: handle all kind of Digital Values under your own control and responsibility and apply your very own philosophy of privacy without being nudged by others
- No centralized business model (pointless); no token/coin.
Hello I2P Network

- A few basic facts (some are simplified - educational reasons):
 - I2P is an overlay network (misleading name «darknet» is just used by dubious media desperately in need for clicks)
 - It’s a peer-to-peer network where every node in the network acts as a router
 - I2P itself has no storage capabilities – it is a transport layer
 - Messages travelling through the network are multiple times encrypted (like a garlic: it has multiple layers) – call it «Confidentiality feature»
 - Messages hop over several routers within the network to their final destination (using «tunnels») – call it «Anonymity feature»

- In a nutshell: I2P = confidential & anonymous message transport
Latency: I2P network

DIVA.EXCHANGE Research: I2P Network Latency, UDP

Latency, ms

Frequency

- Default network config
- Hidden network, Tunnel length/Variance=2

Raw datagrams, 02105 samples, evenly distributed over 6 hours ---+ July 2023 ---+ created using: https://github.com/diva-exchange/i2p-sasn
Concept: I2P-b32 Addresses

- **Remember**: the I2P network provides anonymity
- **Example**:
 auoqbfnujchht4v3nqahpzhqtwlyomesfynwlts5bqqi3nd3ka = diva.i2p
- Destinations within the network («peers») are identified by public keys
- A Public Key of a destination can be transformed to a b32 address. I2P-b32 address = the base32 encoded sha26-hash of the public key
- There exists no algorithm to resolve a name (like «diva») to its b32 address – it's only a local lookup in a key/value store
Concept (2)

- I2P has **only a local** addressbook (a key/value store)
- Users can build their own addressbook or download it from a «trusted» source (which is a joke by itself in an anonymous and trustless network)
- DIVA studies a very trivial use case of DNS: mapping destinations to shorter and simpler names
Motivation: Why? (1)

- I2P shall be a fully distributed network – without central authority
- Today, the I2P network has some «jump services and name registries» which act as kind-of-DNS. This is obviously a central component/concept and hence not compatible with the idea of true distribution (not saying that there are bad actors, it's just not compatible).
- True distribution = distributed ledger = blockchain-like system
Why? (2)

- Fully anonymous
- Immutable
- Barrier-free
- Trustless
Trust me:
Concept of «Trust»

- Example: believing in «Flat Earth» means «trusting a specific set of made-up root data leads to misleading conclusions»
- Typically: Larger systems (technology- or human-driven) building on trust, grow to a complex, strongly regulated and highly intransparent colossus over time. Such systems are wrong by design, mostly corrupted and the opposite of elegant.
- Solution: (a) base systems and decisions on math, keep them lean/small, uncoupled and transparent and (b) add a cost function to prevent abuse
Context (1) - History

• A range of approaches to distribute DNS exist – like an older/failed project: «[...] a currency native to the blockchain is necessary to create a cost function [...]»

• Fact: DIVAchain does not implement concepts like «currency-based cost functions» or «trusted (validator) nodes». Side-note/remember: a non-fungible «currency» isn't a currency.

• Naive DHT-like concepts are failing on «immutability» and «integrity» (same problems as the «trust» concept)
Context (2): CAP theorem

- CAP theorem: Consistency, Availability, Partition tolerance
 - DIVAchain chooses «Availability and Partition tolerance» (aka «eventual consistency»)

- Why? Consistency is not important in this context. Why? Because it's «cheap» to query the network to detect partitioning.
Context (3) - Fallacies

- In distributed computing, there are well-known fallacies. A few:
 - Zero network latency, unlimited bandwidth
 - Homogenous and secure network
- Fact: poorly developed systems will fail by using I2P as a transport layer
- DIVAchain works as expected using I2P as a transport layer
Context (4) - DIVAchain

• Properties
 - Blockchain-like system («CAP theorem»: within the I2P network, consistency is too expensive, see also «Fallacies of Distributed Systems»)
 - supports «immutability» and «integrity»
 - byzantine fault tolerant (BFT) approach (no proof-of-work, no validators)

• Cost functions
 - Cost of writing to local: almost zero
 - Cost of replication (=requiring a vote on local data from a remote peer): to be finally specified and implemented (probably: a function of availability and/or co-operation)
The Bad... (1)

- Blockchain implementation: Democratic Byzantine Fault Tolerance (BFT, see FOSDEM 23) **failed**. Reason: I2P reliability (see fallacies) is not sufficient for BFT – example, time to consensus: 32 nodes, >2 minutes.
...and the Good (2)

- The «eventual consistency» approach of DIVAchain seems to finally deliver reasonable results and it becomes applicable for diva.exchange use cases.
- Feedback on the experimental DNS project from academia and students was positive and highly motivating.
- I2P research (de-anonymization studies) received more attention both from academia and the I2P community.
- DIVAchain and I2P test network available.
Summary and Take Outs

- DNS for I2P on a modified BFT-blockchain-like system is a reasonable solution approach

- The core challenges, as known today:
 - Implementing cost functions
 - Implementing «decisions», implementing global state
 - It's a very naive (and maybe silly) «first-come-first-served» approach

- Partizipation in the project is much welcome - just fork it and get involved please...
Sources

• Docker compose, source code: https://github.com/diva-exchange/diva-dockerized
• DIVAchain, source code: https://github.com/diva-exchange/divachain
• I2P SAM library, source code: https://github.com/diva-exchange/i2p-sam
• Container / Docker images, including documentation: https://hub.docker.com/u/divax
• I2P Research (like scalability tests, de-anonymization approaches): https://github.com/diva-exchange/academia
Discussion / Links

Web: https://diva.exchange/
Twitter: @DigitalValueX
Mastodon: @social@social.diva.exchange
Telegram Group: https://t.me/diva_exchange_chat_de
Source Code (AGPL3 or better; Apache 2.0) & Research/Academia: https://github.com/diva-exchange
Docker Images (I2P and DIVA stuff): https://hub.docker.com/u/divax
I2P & Docs: https://geti2p.net