FreeCAD

State of the union

Yorik van Havre / Aik-Siong Koh
FOSDEM 2024

The fresh stuff!

 On our way to 1.0! (Toponaming, assembly)
» Sketcher UX improvements

* Theming and Ul

 FPA, Ondsel and around

Toponaming
The problem:

EdQeg

Toponaming
* The solution comes from the Link branch by
@Realthunder

* An engine that remaps and tracks component
names

e Almost done!

Assembly

In a moment!

Sketcher UX

Auto-constraining

Automatically
selects
vertical/horizontal
length constraints

Sketcher UX

On-screen input

Allows to Insert "

dimensions on
creation

1.87 cm

Theming and Ul

B+ > e@ODBMOB=7¥
OOH OO OO FASRBT NS | —/ b6 =k FE4HHSH M @ W 15
WhLEN

Fle [t Wew Jools Macna Sieich Wdows Hel Aucewsaries

el =~ oeEese o6
=@@E - CINES - A

Tren v e Cormbn v

Modd Y T

=] —_—
3 LQJ %
e
-
W sorrre g -
" ek 4 Dofish a
W + Urber coniranad. & Dafin a
W cemersing
- Filgry. o R
.
.
5
e
v
v
v
v
e i
P b - =
/ \
e [L -
il
- £
n.
B'.
.
|’
|-
a
s]
e H1
\, / m.
-]
]

St page

weirheet | FreefAR 811 hde o B' L el -m‘ ovohiMow £ OEI.

Theming and U

Edit View Tools Macro Sketch PartDesign Measure Windows Help Accessories

Fas ¥ 2 N e eB&HP o SO)R 3 2 & & ITASLR Fdds 09DE QLR ERMRME &
Tree view 2 Combo View

Labels & Attributes Description

Q Application

@ @ PartDesignExample

& Body
@)

ok Cancel
&P Pocket parameters

Type Through all
Offset to face
Direction
Direction/edge: Sketch normal
Show direction

Symmetric to plane

Reversed

Property view
Update view
Property Value

=
a
®
®
o
S
3
@
8
3
@
=

View Data

Property view Selection view P start page R PartDesignExample : 1

Report view = Python console
conda-forge | (main, Aug 22 20 0:19) [MSC v.1929 64 bit (AMD64)] on
edits’ or ' ! for more informati

Valid, Internal name: Pocket002 © Blender ¥ 309,03 mm x 189,37 mm

FPA, Ondsel and around

The community is growing

* We have our own non-profit org! The FPA

 Commercial player developing for FreeCAD:
Ondsel

* Getting inspiration from Blender

Ondsel Assembly Solver

Aik-Siong Koh
2024-02-04 Sun

freeCAD by askoh

=« Basic 3D CAD with Motion Simulation
= https://www.ar-cad.com/

= Visualworks Smalltalk and OpenGL
= Used as addin in Alibre, SpaceClaim

https://www.ar-cad.com/

OndselServer

= Assembly constraints for FreeCAD.org
= Smalltalk motion simulator translated to C++

« https://ondsel.com/blog/

» https://github.com/Ondsel-Development/MbDTheory
» https://github.com/Ondsel-Development/OndselSolver

askoh.com

https://ondsel.com/blog/
https://github.com/Ondsel-Development/MbDTheory
https://github.com/Ondsel-Development/OndselSolver

askoh.com

Constraints

* Absolute

* Euler Parameter
* At Point

* In Plane

* Perpendicular

* Distance

e Constant Velocity
* Coupler

G, = q, = 0
G, =E’+F;
GIeJeO(q?S f)
G e (Qas t)

GL(q?'S t) IeO JeO
Gu = Tere _fu(t)

G()(q?S t)_l OJJO+JIO 7o =0
anc(qasat): Gr(iTeJele ° IeJI -)

+E;+E;-1=0
I&IeO(q?s?r) =0
Ceere (q,s t) =0

=0

Rigid (no motion) Prismatic (1) Revolute (1) Parallel Cylinders (2)

Cylindrical (2) Spherical (3) Planar (3) Edge Slider (4)

\@f

ICylindrical Slider (4)| Point Slider (5) Spherical Slider (5) |Crossed Cylinders (5)

askoh.com

Smalltalk to C++ Translation

e Simplified C++
* Very Smalltalk like
* Public and Virtual methods

* Use Smart Pointer std::shared_ptr
* Pointer with reference counting
* No memory leak worries
* No new or delete
* No difference in passing by value or reference
* Need to avoid circularity

Digital Twin Concept (2002)

The Digital Twin

Engineering

« Drawings
» Specification
* BIM Model

Operations

* loT Feeds
» Sensors

« Smart Appliances
» Maintenance

« Occupation

* Energy

Information

« Asset Locations

+ Asset Details

+ Product Details

* Maintenance
Regimes

+ Inspections

Physical

askoh.com

Data Storage

Performance
indicators

Analytics

Dependency

Digital Twin Concept

Digital I_/Iodellpg
. — | Simulation
Twin . .
Animation

Digital-TwinS: Digital Twin applied to Software

= Combine best of static and dynamic languages

« TIOBE Index (Dec 2022) popularity ranking
1. Python (dynamic)
2. C (static)
3. C++ (static)

Why Digital-TwinS

Input —>| C++ Is FAST, complex i—» Output
C++ Is best of FAST

Input —>| Py Is FLEXIBLE, simple i—» Output
Python is very FLEXIBLE

Digital-TwinS: C++ and Python

Input —>|C++ Production Program i—» Output

Input —>‘Python Twin Program i—» Output

Same Input Same Output (SISO)
Internals can be independent

Same Input Same Output (SISO)

Input—>|C++ —{ - U i—»Output

Input == Py —1_ 1~ == Output

Twins can be any size or any component
Internals can be partially dependent

C++ is FAST at all cost Python is NIMBLE and rugged
Low cost

K

A hybrid vehicle would have compromise aailities
Java, C#, Obj C

askoh.com

C++ Heavy Infrastructure Python Light Infrastructure
Small area Large area

FAZLASH TS

- Lo vy i 3 [9
T.m‘”’.mmg - - \§> N Voyageur Multi-Use Trail System > Ml
Hwy 63 i, —
o R, J: >
Redbridge &/ T 2 o e
West End L €

North Bay — a2

grandstand o o
’ West 4

Entrance f toncy
" 4

~ 2
27

- > { : »

85
 foonoremo] 7

Portland
International
Raceway

8 First Aid
m Restrooms/Portapottie

B

{l;yn;;n:M n:ﬁﬁ"'wﬂl System &8 ‘i
Handicapped viewing - “)
Bus stop b /
Concessions £ T K { ‘.?_;‘”‘ A_-—S_,_ 2= g _‘E%'%TTE"
AT™M P
BIEE www.vmuts.com ﬂ m = TRAILS s MUD m— STEEP TERRAIN
'":?@Vm"ts . s RALLY ROUTE wws GRAVEL ROAD MUNICIPAL ROADS

Execution Exploration
We want to win in both settings

askoh.com

Why Digital-TwinS cont.

Input —>|C++ IS Machine centric i—» Output

Input —>| Py I1s Programmer Centric|—> Output

Humans think Objects
“Development at the speed of thought”

Why Digital-TwinS cont. 1

Input —»‘ C++ for Computer Experts i—» Output

Input—>| Py for Domain Experts i—»Output

Synergy and feedback between experts
Python and FreeCAD for Brain Dump

Why Digital-TwinS cont. 2

* Assume developing a brand-new feature.
* Python alone can do it in T days. But the feature is slow.
 C++ alone can do it in 5T days. But the feature is fast.

* Twins can do it in 3T days. Python development T days.
Guided port to C++ is 2T days. Feature is fast and
development is shorter.

* Twins cross-checking each other will reduce bugs in both
greatly. This is a bonus.

Strategy for Digital-TwinS

e Capture C++ algorithms in Python twin

 Executable documentation

* Experiment in Python twin (superset program)

* Fearless programming

* Transfer discoveries to C++ twin

 Manually, automated or both
* Strict testing
* |terate with twin

* Debug in Python twin
* Transfer fixes to C++ twin

Prototype vs Digital-TwinS vs Production

e 1 1 1 4 [I ——

Prototype Dev is Nimble and Simple in Py
Production Dev is Difficult in C++. Runs FAST

Prototype in Py Digital-TwinS in Py advanced features
Production in C++ stable features
Production in C++ Slow progress Faster progress stable features

Digital-TwinS in Py advanced features

