
V4L2 Stateless Video Encoding:
Hardware Support and uAPI

Paul Kocialkowski
paulk@sys-base.io

FOSDEM 2024
Saturday February 3rd 2024



Rationale

Why encode videos?
Because pictures are too big.

2/19



Rationale

So let’s compress videos!
And now they look crappy.

3/19



Rationale

Main topic of encoding:
Trade-off betwen data size and perceived quality.

4/19



Video Codecs

What makes a good codec?
• Better trade-off between size and perceived quality
• Codecs have improved very significantly
• Less size with more perceived quality

Codec specifications:
• Standards and specifications (hard to read)
• Some require royalties, some don’t
• Good fit for both software and hardware implementations
• Hype codecs: AV1, VP9, H.265 (HEVC), H.266 (VVC)
• Adoption of new standards is slow

Can help drastically reduce global network/storage power consumption.

5/19



Video Compression Techniques

Common video compression techniques:
• Spatial compression:

• YUV chroma sub-sampling (typical 4:2:0 8-bit)
• Frequency domain transform and quantization (QP value)
• Intra prediction (redundancy)
• Entropy coding

• Temporal compression:
• Intra-coded (I) frames: without reference
• Predictive (P) frames: with past references
• Bi-predictive (B) frames: with future and past references

• Pictures are split in macroblocks, with a deblocking filter
• Various more advanced codec-specific techniques

6/19



Video Compression Techniques

Visualization of inter-frame motion vectors
Caminandes 2: Gran Dillama, Blender Foundation (2013)

7/19



Video Encoding Techniques

Strategies for target behavior/use case:
• Constant/average bitrate (CBR/ABR)
• Constant quality (CQP/CRF)
• Variable bitrate (VBR)
• Fine-tuned, custom

Rate-control feedback loop implementation:
• Implement the selected strategy
• Decide on frame type and quantization parameter (QP)
• Handle variable scenes and react to changes

Rate-control implementation is key for best results!

8/19



Hardware Video Encoding

Video encoding acceleration:
• CPU-based encoding is generally very demanding/slow
• Use-cases with high sizes and frame rates
• Use-cases with on-the-spot (real-time) needs (cameras)
• Dedicated hardware encoder circuits relieve the pain!

Hardware encoder features:
• Produce conformant bitstream for codec(s)
• Common pre-processing: format adaptation, anti-shake, crop
• Usual limitations: profile/level support, number of reference slots
• Time-sharing between contexts (parallelization too!)

9/19



Hardware Video Encoding Implementation

Two major types of hardware implementations:
• Stateful encoders (abstracted, less flexible):

• Include a dedicated micro-controller and compression units
• Firmware (proprietary) manages: context (state), memory, rate-control
• Mailbox and message interface with main CPU
• Generates bitstream with coded meta-data and picture data

• Stateless encoders (bare-metal, more flexible):
• No micro-controller, only compression units
• CPU-side driver driver manages: context(state), memory and rate-control
• Register-driven configuration from main CPU
• Generates bitstream with coded picture data only

Memory considerations:
• Reconstruction buffers for references
• Dedicatetd DMA memory (without IOMMU), cache coherency
• Zero-copy buffer sharing from other units (camera)

10/19



Hardware Video Encoding Known Designs

Known stateful designs:
• Imagination: PowerVR VPU
• Chips&Media: CODA, WAVE
• Allegro/Amphion: Windsor
• Qualcomm: Venus, Iris
• Samsung: MFC
• Amlogic: VPU
• Mediatek: Video Codec
• NVIDIA: NVENC
• AMD: VCE

Known stateless designs:
• Verisilicon: Hantro
• Allwinner: Video Engine
• Intel: Quick Sync Video
• Maybe more?

11/19



V4L2 Stateful Encoding Support

Stateful encoding API:
• V4L2 memory-to-memory (M2M) API with 2 queues:

• Single video device
• Output queue: picture (source)
• Capture queue: coded (destination)

• Dedicated pixel formats: e.g. V4L2_PIX_FMT_H264
• Dedicated controls for encoding features and rate-control:

e.g. V4L2_CID_MPEG_VIDEO_H264_ENTROPY_MODE
• Frame interval enumeration and selection
• Frame size enumeration, alignment and target crop
• Supported by GStreamer and FFmpeg

12/19



V4L2 Stateless Encoding Support

Stateless encoding is significantly more complex:
• Bitstream meta-data needs to be generated
• Rate-control needs to be implemented
• References need to be selected explicitly
• More memory management needed: side and reconstruction buffers
• uAPI still needs to be hardware-agnostic

Stateless encoding should be flexible:
• Low-level control over the hardware opens possibilities
• Userspace might know relevant information
• Userspace might want/need custom rate-control
• Simple/usual cases should be covered without too much userspace logic

13/19



V4L2 Stateless Encoding: Hantro H1

Existing work (not mainline-based):
• MPP (Rockchip):

• User-space rate-control and meta-data bitstream generation
• Custom interface with full userspace register configuration
• https://github.com/rockchip-linux/mpp, path: mpp/hal/vpu/h264e/

• ChromiumOS custom V4L2 driver (Google):
• User-space rate-control and meta-data bitstream generation
• Custom register configuration and feedback data via V4L2 controls
• Kernel: https://chromium.googlesource.com/chromiumos/third_party/kernel/,

branch: chromeos-4.4, path: drivers/media/platform/rockchip-vpu/

14/19

https://github.com/rockchip-linux/mpp
https://chromium.googlesource.com/chromiumos/third_party/kernel/


V4L2 Stateless Encoding: Hantro H1

Mainline-based attempts:
• H.264 encoding (Bootlin):

• User-space rate-control (basic) and meta-data bitstream generation
• Custom register configuration and feedback data via V4L2 controls
• Kernel: https://github.com/bootlin/linux, branch: hantro/h264-encoding-v5.11
• Userspace: https://github.com/bootlin/v4l2-hantro-h264-encoder

• VP8 encoding (Collabora):
• User-space rate-control (basic), kernel-side meta-data bitstream generation
• Kernel: [RFC 0/2] VP8 stateless V4L2 encoding uAPI + driver
• Userspace: GStreamer merge request #3736

Hardware notes:
• Specific constraints on some meta-data fields
• In-loop rate-control helpers (checkpoints, MAD)

15/19

https://github.com/bootlin/linux
https://github.com/bootlin/v4l2-hantro-h264-encoder
https://lore.kernel.org/linux-arm-kernel/20230309125651.23911-1-andrzej.p@collabora.com/T/
https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/3736


V4L2 Stateless Encoding: Allwinner Video Engine

Existing work:
• A10/A13/A20 cedrus h264enc (Jens Kuske):

• Research effort from the linux-sunxi community:
https://linux-sunxi.org/VE_Register_guide

• User-space rate-control (basic) and meta-data bitstream generation:
https://github.com/jemk/cedrus.git

• Using Allwinner’s downstream kernel driver
• Fully userspace implementation (MMIO register map)

Mainline-based attempt:
• V3/V3s/S3 H.264 encoding (Bootlin):

• Kernel-side rate-control (basic) and bitstream generation
• Using the stateful encoding uAPI (more or less)
• Complete re-architecture of the cedrus driver
• Kernel: https://github.com/bootlin/linux, branch: cedrus/h264-encoding
• Userspace: https://github.com/bootlin/v4l2-cedrus-enc-test

16/19

https://linux-sunxi.org/VE_Register_guide
https://github.com/jemk/cedrus.git
https://github.com/bootlin/linux
https://github.com/bootlin/v4l2-cedrus-enc-test


V4L2 Stateless Encoding uAPI: Lessons Learned

Bottomline:
• Re-using the stateful API brings significant limitations
• Bitstream meta-data needs to be produced kernel-side
• Rate-control on kernel-side is simple but limiting
• Rate-control in userspace is flexible but more involved

State of the art:
• Finding an acceptable middle-ground is hard
• Ongoing discussions on the linux-media mailing-list
• uAPI is needed before adding drivers

Stateless Encoding uAPI Discussion and Proposal
https://lore.kernel.org/linux-media/ZK2NiQd1KnraAr20@aptenodytes/

17/19

https://lore.kernel.org/linux-media/ZK2NiQd1KnraAr20@aptenodytes/


V4l2 Stateless Encoding uAPI: Proposal and Thoughts

Possible ways forward:
• Have a switch between kernel-side and user-side rate-control?

• Stateful uAPI clone for simple cases
• Explicit frame type, QP and reference list decision for advanced needs

• Provide suggestions, let userspace decide:
• Feedback data provided from kernel-side rate-control implementation
• Let userspace decide and tweak suggestion
• Have a switch to auto-apply feedback for next frame

• Common code for stateless encoders:
• Codec-specific bitstream meta-data generation
• Rate-control implementations

Follow-up work:
• Merge encoder work in hantro/verisilicon and cedrus drivers
• Gstreamer and FFmpeg integration

18/19



Discussion

Thanks for listening!

19/19


