Load balancing using XDP

Luca Bassi

FOSDEM 2024

® 00

https://creativecommons.org/licenses/by-sa/4.0/deed.en

eBPF

eBPF permits to run sandboxed programs in the OS kernel, mainly
event-driven.

It's used to extend the kernel without recompiling it or use
modules.

Safety is provided through static code analysis.

2/19

eXpress Data Path

eXpress Data Path provides a high performance, programmable
network data path in the Linux kernel.

It provides bare metal packet processing at the lowest point in the
software stack, which makes it ideal for speed.

The XDP program returns an action code to tell the kernel what
to do with the packet:

> XDP_PASS
» XDP_DROP and XDP_ABORTED
P> XDP_TX and XDP _REDIRECT

3/19

First XDP program

This program lets all packets pass to the kernel network stack.

return XDP_PASS;

1 #include <linux/bpf.h>

2 #include <bpf/bpf_helpers.h>

3

4 SEC("xdp")

5 int xdp_pass(struct xdp_md *ctx)
6 {

7

8

}

4/19

First XDP program

We can compile it with clang using the —target bpf option, for
example:

clang -g -Wall -Wno-compare-distinct-pointer-types \
-target bpf -02 -c xdp_pass.c -o xdp_pass.o

And load it with xdp-loader included in the xdp-tools:

sudo xdp-loader load interface_name xdp_pass.o

5/19

First XDP program

If we replace XDP_PASS with XDP_DROP, all incoming packets will
be dropped.

This will happen before the kernel network stack, so for example
these packets will be “invisible” also to tcpdump.

Fortunately, we can use xdpdump for debugging XDP programs.

xdpdump -i interface_name --rx-capture entry,exit -x

6/19

Maps

~NOoO O~ WN =

Maps are the method used by eBPF programs to store and retrieve
data.

Maps can be accessed from applications in user space via syscalls.

struct {
__uint (type , BPF_MAP_TYPE_PERCPU_ARRAY);
__uint (max_entries, 2);
__type(key, __u32);
__type(value, long);
//__uint (pinning, LIBBPF_PIN_BY_NAME);
} count SEC(".maps");

7/19

Examining a packet

O ~NOOThs WN

e e e el el
~NOo ok~ N H OO

18
19
20

void *data_end = (void *)(long)ctx->data_end;
void *pos = (void *)(long)ctx->data;
struct ethhdr *eth = pos;
if (eth + 1 > data_end) {return -1;}
__ul6é h_proto = eth->h_proto;
pos = eth + 1;
__u32 key;
if (h_proto == bpf_htons (ETH_P_IP)) {
struct iphdr *ip = pos;
if (ip + 1 > data_end) {return -1;}

__u8 protocol = ip->protocol;

if (protocol == IPPROTO_ICMP) {
key = 0;
long *value = bpf_map_lookup_elem(&count,
if (value) {*value += 1;}

}

} else if (h_proto == bpf_htons(ETH_P_IPV6)) {
VE SR V4

¥
return XDP_PASS;

&key);

8/19

Reading a map from user space

1 int fd = bpf_obj_get("/sys/fs/bpf/test/count");
2 if (fd < 0) {

3 printf ("Error bpf_obj_get\n");

4 return fd;

5 }

6 int nr_cpus = libbpf_num_possible_cpus ();

7 1long sum([] = { 0, 0 };

8 for (__u32 key = 0; key <= 1; ++key) {

9 long values[nr_cpus];

10 if ((bpf_map_lookup_elem(fd, &key, values)) != 0) {
11 printf ("Error bpf_map_lookup_elem\n");

12 return -1;

13 }

14 for (int i = 0; i < nr_cpus; ++i) {

15 sum [key] += values[i];

16 }

17}

18 printf ("IPv4: %d\nIPv6: %d\n", sum[0], sum[1]);

9/19

Redirecting packets

O~NO O W=

Redirecting packets, using the XDP_TX (or XDP_REDIRECT) return
code, can be used for implementing a load balancer.

__builtin_memcpy(eth->h_dest, destination_mac,
sizeof (destination_mac));

ip->daddr = destination_ip;

__builtin_memcpy(eth->h_source, load_balancer_mac,
sizeof (load_balancer_mac));

ip->saddr = load_balancer_ip;

ip->check = iph_csum(ip);

return XDP_TX;

10/19

Direct Server Return

We can use direct routing to -

have outbound traffic served

directly from backend servers. ¢

All the backend servers and the

load balancer need to use the

same virtual IP. ¢

The backend servers must not Load

announce the virtual IP, balancers

otherwise some packets may go

directly to the server, bypassing

the load balancer. ’Server‘ ’Server‘ ’Server‘
\ 1 1

11/19

Hashing

We want that all the packets of a specific connection go to the
same backend server.

We can hash some information of the packet and use the resulting
hash to select the backend server.

For example, we can hash: source and destination IPs and ports.

To minimise the number of reassignments in case of adding or
removing a server, we must use a consistent hashing algorithm, for
example rendezvous hashing.

12/19

Rendezvous hashing

Rendezvous or highest random weight (HRW) hashing is an
algorithm that allows clients to achieve distributed agreement on a
set of k options (in this case 1 server) out of a possible set of n
options (the backend servers).

The idea is to assign each server a score for each request and
assign that request to the server with the highest score.

You can assign a weight that acts as a multiplier to each server.

If a server is removed, the algorithm will simply select the server
with the second-highest score in cases where the server removed
was the one with the highest score, while the selection will remain
unchanged in other cases.

13/19

ECMP

Routers have a feature called Equal-Cost Multi-Path (ECMP)
routing, which is designed to split traffic destined for a single IP
across multiple links of equal cost.

An alternative use of ECMP can come in to play when we want to
shard traffic across multiple servers rather than to the same server
over multiple paths.

14 /19

A distributed load balancer

From a classic architecture with dedicated load balancers...

Load
—»| Router |—» Server
‘ Rowter] | , k24

15/19

A distributed load balancer

... to a distributed load balancer

»

}

16/19

A distributed load balancer

In this topology, two servers announce the same |IP address with
BGP, while the other two are using static routes.

The router is blissfully unaware that the connections are being
handled in different places.

AlpineLinux-BGP-1

[4™

Switchl

AlpineLinux-BGP-2

[4

CiscoCatalyst8000V,

AlpineLinux-StaticRoute-1

4™

AlpineLinux-StaticRoute-2

Network topology created with GNS3
(Luca Bassi, CC BY-SA 4.0)

17/19

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Conclusions

XDP permits to develop high-efficiency load balancers.
Direct Server Return can increase the throughput.

To redirect all the packets of a specific connection to the same
backend server, a consistent hashing algorithm can be used.

It's possible to leverage the ECMP routing to distribute packets
between servers and deploy directly to backend servers without the
need for a dedicated machine.

Source code:
https://gitlab.com/argoware/xdp-load-balancer

18/19

https://gitlab.com/argoware/xdp-load-balancer

Thank you for your attention

Questions?

19/19

	eBPF and XDP
	XDP programs
	Direct Server Return
	Hashing
	ECMP
	A distributed load balancer
	Conclusions

