
Licensed under CC-BY-SA-3.0

The SPDX Safety Profile

Nicole Pappler

CTO,

AlektoMetis.com

Stanislav Pankevich

Software Architect,

Reflex Aerospace GmbH

Licensed under CC-BY-SA-3.0

Safety Analysis is Performed on Systems

Linux
RTOS
(e.g.
Zephyr)

Other
RTOS
(e.g.
Zephyr)

HW-Virtualization (e.g. Xen)

µC

Tooling (e.g. Yocto)

µP

Safety Critical Application
(e.g. from CIP, AGL, Energy, etc.)

Licensed under CC-BY-SA-3.0

Definition of Functional Safety

● Safety – the freedom from unacceptable risk of physical injury or of damage to the
health of people, either directly, or indirectly as a result of damage to property or to
the environment

● Functional Safety
○ the part of safety that depends on a system or equipment operating correctly in

response to its inputs
○ Detecting potentially dangerous conditions, resulting either in the activation of a

protective or corrective device or mechanisms to prevent hazardous events or in
providing mitigation measures to reduce the consequences of the hazardous
event.

Licensed under CC-BY-SA-3.0

Functional Safety - systematic capability

Safety is a system property!

But:

Systematic capability is the general assumption, that
● if development, test and deployment of a system follow a specific set of tasks

and
● there is evidence for adherence to these tasks
● (and under the assumption that the system architecture supports safety)

⇒ Software is capable of performing as intended

Licensed under CC-BY-SA-3.0

Functional Safety - Standards

What are these tasks and evidences?
● Usually defined in Safety Standards
● Focus: Unique IDs, traceability, completeness, evidences

⇒ define your dependencies (also inside of your project!) and keep them up to date!

Licensed under CC-BY-SA-3.0

What is FuSa aiming for?
Safety Architecture and Documentation

Processes for development,
verification, build, deployment
and maintenance (according to
Safety Standards like IEC 61508)

Suitable,
robust
system
concept and
architecture

Loads of
documentation
and evidences

Sa
fe

ty
 P

la
n

Ve
ri

fi
ca

ti
on

 P
la

n

Re
qu

ir
em

en
ts

SW
 A

rc
hi

te
ct

ur
e

&
 D

es
ig

n

Co
di

ng
 G

ui
de

lin
es

Analysis,
Reviews and
Tests

Te
st

 C
as

es

Te
st

 R
ep

or
ts

Co
de

Ca
lib

ra
ti

on
 D

at
a

Licensed under CC-BY-SA-3.0

Dependencies in a FuSa Project

Requirements

Component
Qualification /
Supply Chain

Validation &
Assessment

Tooling Eval &
Qualification (Dev,
Verification, Build,
Deploy…)

Architecture &
Design

Implementation
(Code)

Unit Verification &
Tests

Integration &
Tests

Software Tests

Documentation
Management Plan

Configuration
Management Plan

Requirements
Management Plan

Reports

Reports

Reports

Functional Safety
Management Plan

Licensed under CC-BY-SA-3.0

Maintenance
After Applying a Vulnerability Fix

Requirements are needed to know you’re “done” after applying a patch:
• Need to be able to ensure you have compliance to the updated system requirements after applying a

patch
• Given the rate of change and vulnerabilities, we need a way to make this automated, so it needs to be

machine readable
• For each file patched, what requirements does it interact with, what tests need to be rerun to

regenerate the evidence

Software Bill of Materials (SBOMs) today:
• Machine readable - Identities & Dependencies are part of the minimum definition
• SPDX SBOMs can also enables recording and connecting the sources, assessments, vulnerabilities

& patches, build & calibration data, tests, requirements and evidence ⇒ path to automation

Licensed under CC-BY-SA-3.0

SPDX Safety Dependencies in a FuSa Project

Requirements

Component
Qualification /
Supply Chain

Validation &
Assessment

Tooling Eval &
Qualification (Dev,
Verification, Build,
Deploy…)

Architecture &
Design

Implementation
(Code)

Unit Verification &
Tests

Integration &
Tests

Software Tests

Documentation
Management Plan

Configuration
Management Plan

Requirements
Management Plan

Reports

Reports

Reports

Functional Safety
Management Plan

SPECIFICATION_FOR

SPECIFICATION_FOR

REQUIREMENT_FOR

REQUIREMENT_FOR

TEST_OF

TEST_OF

TEST_OF

EVIDENCE_FOR

EVIDENCE_FOR

EVIDENCE_FOR

SPECIFICATION_FOR

Licensed under CC-BY-SA-3.0

Safety Standards are looking for:
• Unique ID, something to uniquely identify the

version of the software you are using.
– Variations in releases make it important to be

able to distinguish the exact version you are
using.

– The unique ID could be as simple as using
the hash from a configuration management
tool, so that you know whether it has
changed.

• Dependencies of the component
– Any chained dependencies that a

component may require.
– Any required and provided interfaces and

shared resources used by the software
component. A component can add demand
for system-level resources that might not be
accounted for.

• The component’s build configuration (how it was
built so that it can be duplicated in the future) and
sources

• Any existing bugs and their workarounds

Maintenance and Promotion of Safety Principles

• Documentation for application manual for the component
– The intended use of the software component
– Instructions on how to integrate the software

component correctly and invoke it properly

• Requirements for the software component
– This should include the results of any testing to

demonstrate requirements coverage
– Coverage for nominal operating conditions and

behavior in the case of failure
– For highly safety critical requirements, test coverage

should be in accordance with what the specification
expects (e.g., Modified Condition/Decision Coverage
(MC/DC) level code coverage)

– Any safety requirements that might be violated if the
included software performs incorrectly. This is
specifically looking for failures in the included
software that can cause the safety function to perform
incorrectly. (This is referred to as a cascading failure.)

– What the software might do under anomalous
operating conditions (e.g., low memory or low
available CPU)

Source: https://www.linux.com/featured/sboms-supporting-safety-critical-software/

https://www.linux.com/featured/sboms-supporting-safety-critical-software/

Licensed under CC-BY-SA-3.0

Safety Standards are looking for:
• Unique ID, something to uniquely identify the

version of the software you are using.
– Variations in releases make it important to be

able to distinguish the exact version you are
using.

– The unique ID could be as simple as using
the hash from a configuration management
tool, so that you know whether it has
changed.

• Dependencies of the component
– Any chained dependencies that a

component may require.
– Any required and provided interfaces and

shared resources used by the software
component. A component can add demand
for system-level resources that might not be
accounted for.

• The component’s build configuration (how it was
built so that it can be duplicated in the future) and
sources

• Any existing bugs and their workarounds

Maintenance and Promotion of Safety Principles

• Documentation for application manual for the component
– The intended use of the software component
– Instructions on how to integrate the software

component correctly and invoke it properly

• Requirements for the software component
– This should include the results of any testing to

demonstrate requirements coverage
– Coverage for nominal operating conditions and

behavior in the case of failure
– For highly safety critical requirements, test coverage

should be in accordance with what the specification
expects (e.g., Modified Condition/Decision Coverage
(MC/DC) level code coverage)

– Any safety requirements that might be violated if the
included software performs incorrectly. This is
specifically looking for failures in the included
software that can cause the safety function to perform
incorrectly. (This is referred to as a cascading failure.)

– What the software might do under anomalous
operating conditions (e.g., low memory or low
available CPU)

Source: https://www.linux.com/featured/sboms-supporting-safety-critical-software/

Available in SBOM

https://www.linux.com/featured/sboms-supporting-safety-critical-software/

Licensed under CC-BY-SA-3.0

All FuSa related documentation is part of the Safety Case!
Think of all these documents as part of the release - each document is part of the
Bill of Material, as is each screw, each microcontroller and each piece of software!

FuSa documentation structure

Plans
Processes
Guidelines

Requirements
Specifications

Verification
Analysis
Test
Evidences

Licensed under CC-BY-SA-3.0

Data Structure of current FuSa projects…

Plans
Processes
Guidelines

.pdf, .docx,
QMS System,
Wikis

Requirements
Specifications

Zoo of lifecycle
management
systems,
.pdf, .docx

Verification
Analysis
Test
Evidences

Zoo of lifecycle
management
systems and test
tools,
.pdf, .docx, .xls,
html, code …

Code,
Build data,
executables

One or more
repos, git or
svn based

Licensed under CC-BY-SA-3.0

Data Structure of current FuSa projects…

Plans
Processes
Guidelines

.pdf, .docx,
QMS System,
Wikis

Requirements
Specifications

Zoo of lifecycle
management
systems,
.pdf, .docx

Verification
Analysis
Test
Evidences

Zoo of lifecycle
management
systems and test
tools,
.pdf, .docx, .xls,
html, code …

Code,
Build data,
executables

One or more
repos, git or
svn based

Traceability breaks
between tools, between
configurations, etc,
impossible to keep up
during updates and
product variants

Licensed under CC-BY-SA-3.0

No 1 Safety Information Exchange Format

Emoji by emojidex

draft_2005TemplateSafetyCase_thisproject_final_forTraceingv06.xls

https://www.emojidex.com/emojidex/emojidex_open_license?ref=iconduck.com

Licensed under CC-BY-SA-3.0

Generic Project View

R
EQ

U
IR

EM
EN

T_FO
R

Design SBOM for fusafoo v 1.0

** Plans Package

Source SBOM for fusafoo v 1.0

##
Specification Package
(Requirements)

Safety Concept
##

**
Implementation
Guidelines Package

!! Evidences Package

<> Source Package

SPECIFICATION_FOR

Build SBOM for
fusafoo v 1.0

??
Test Package
(Test Spec,
Sripts)

REQUIREMENT_FOR

TEST_OF

SPECIFICATION_FOR

!! Test Report Package

EVIDENCE_FOR

Executable Image

SPECIFICATION_FOR GENERATES

Licensed under CC-BY-SA-3.0

Using the SPDX Safety Profile for the Zephyr Project

Software Architectural Element

Zephyr Project:

● Embedded RTOS

● Build system

● Test cases & Test framework

Plus evidences for (safety) systematic capability:

● (Safety) Requirements

● Functional Safety Management plans

● Safety Analysis

● Completeness, Compliance & (Test & Analysis)

Coverage Evidences

Licensed under CC-BY-SA-3.0

Zephyr Requirements Management
Requirements Management Knowledge Model

Licensed under CC-BY-SA-3.0

Zephyr Safety:

!!

**

Zephyr Safety Dev
Plan

SPECIFICATION_FOR

Zephyr
Requirements
Management Plan

SPECIFICATION_FOR

Zephyr
Verification Plan

SPECIFICATION_FOR

Zephyr
Configuration &
Change
Management Plan

**

Software
Requirements
Specifications

##

** Coding Guidelines

Software
Component Design
Specifications

##

SPECIFICATION_FOR

SPECIFICATION_FOR

<> Source
Code

SPECIFICATION_FOR

REQUIREMENT_FOR

Component Tests

??

??
Code review
(Static Analysis)

REQUIREMENT_FOR

SPECIFICATION_FOR

TEST_OF

TEST_OF

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

!!!!

!!

Static
analysis
scan reports

EVIDENCE_FOR

EVIDENCE_FOR

Component
test reports

Dependencies of Safety Plan, Safety Claim, Req, Design and Code

 ##
System safety
concept

REQUIREMENT_FOR

Licensed under CC-BY-SA-3.0

Zephyr Safety:

!!

**

Zephyr Safety Dev
Plan (SDoc)

SPECIFICATION_FOR

Zephyr
Requirements
Management Plan

SPECIFICATION_FOR

Zephyr
Verification Plan

SPECIFICATION_FOR

Zephyr
Configuration &
Change
Management Plan

**

High Level
Requirement##

** Coding Guidelines

…rst

##

SPECIFICATION_FOR

SPECIFICATION_FOR

<> Source
Code

SPECIFICATION_FOR

REQUIREMENT_FOR

Component Tests

??

??
Code review
(Static Analysis)

REQUIREMENT_FOR

SPECIFICATION_FOR

TEST_OF

TEST_OF

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

!!!!

!!

Static
analysis
scan reports

EVIDENCE_FOR

EVIDENCE_FOR

Component
test reports

Design SBOM to Source SBOM

**
Zephyr Safety
Overview (rst)

SPECIFICATION_FOR

Licensed under CC-BY-SA-3.0

Zephyr Safety

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

Source SBOM to Build SBOM

Licensed under CC-BY-SA-3.0

Dependency Identification on Component Level

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

??

?

?

?

?

??

?

?

?

?

?

?

?

Licensed under CC-BY-SA-3.0

Dependency Identification on Component Level

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

?

?

Licensed under CC-BY-SA-3.0

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Integr. Test
Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image
?

?

Dependency Identification on Component Level

Licensed under CC-BY-SA-3.0

Dependency Identification on Component Level

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Test Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

?

Licensed under CC-BY-SA-3.0

Dependency Identification on Component Level

!!

**

Zephyr Safety Dev
Plan

SPECIFICATION_FOR

Zephyr
Requirements
Management Plan

SPECIFICATION_FOR

Zephyr
Verification Plan

SPECIFICATION_FOR

Zephyr
Configuration &
Change
Management Plan

**

Software
Requirements
Specifications

##

** Coding Guidelines

Software
Component Design
Specifications

##

SPECIFICATION_FOR

SPECIFICATION_FOR

<> Source
Code

SPECIFICATION_FOR

REQUIREMENT_FOR

Component Tests

??

??
Code review
(Static Analysis)

SPECIFICATION_FOR

TEST_OF

TEST_OF

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

!!!!

!!

Static
analysis
scan reports

EVIDENCE_FOR

EVIDENCE_FOR

Component
test reports

?

Licensed under CC-BY-SA-3.0

!!

**

**

REQUIREMENT_FOR

Specification
file,
requirements,
architecture

 ##

source file<>

Tests, test
scripts,
verification

??

Evidence,
reports

Plans,
Guidelines,
Process

Executable
image

GENERATES

??

Software Tests

 ## Software Build
Chain
Specification

 ## Test Framework
Specification

SPECIFICATION_FORSPECIFICATION_FOR

(Software
Requirements
Specification)

TEST_OF

Executable image

Dependency Identification on Component Level

Licensed under CC-BY-SA-3.0

Issues in Requirements Engineering
● Commercial requirements tools can be expensive

○ How to build a working group with several organizations collaborating?
● Exchanging requirements

○ What if organizations use different tools and formats?
● Requirements and software worlds are often not connected

○ An initial Word/Excel document gets forgotten in the implementation
● Requirements and open source software are mostly not connected

○ Waterfall model struggles with OSS's rapid and decentralized development
○ Very few OSS projects are developed according to requirements

● But everything is changing (slowly)!
○ GitHub: Over 12 OSS requirements tools with various degrees of maturity

● Key question: How to make requirements useful for open source software?

Licensed under CC-BY-SA-3.0

StrictDoc – FOSS requirements tool
● Created in 2019
● Spare-time project for two core developers
● 1.6K pull requests, 3.4K commits, 30K+ LOC, Apache 2 license
● Inspired by Doorstop's OSS approach to requirements management
● 2020-2022:

○ Documentation generator, HTML export, ReqIF, tracing source files to
requirements, custom fields, traceability graph validations

● 2023:
○ A year of the web-based user interface. The HTML-to-PDF feature for

publishing documents.

Licensed under CC-BY-SA-3.0

StrictDoc – Project goals
● Long-term vision: a free and open-source, but highly capable, tool that makes

requirements work easy and enjoyable
● Automate requirements work at all levels
● All target groups are considered:

○ Software, hardware
○ Systems, electrical, thermal, etc.
○ QA, Safety, management, non-technical, etc.

● Usable on both individual laptops (pip install) and eventually on cloud
● Start creating requirements in 5 minutes, scale to large documents
● Open data: easy way to get data in and out
● Synergies with other tools, e.g., everything Python, Capella MBSE, SPDX, etc.

Licensed under CC-BY-SA-3.0

.SDoc format
● Starting point: Format to support both text and metadata
● YAML frontmatter does not scale
● RST directives do not support nested metadata
● JSON is less human-readable, and so are HTML/XML
● Nesting content in a document with 8+ chapter levels

does not scale visually

● SDoc ('strict-doc') is a practical compromise inspired by:
○ YAML – nested meta information fields
○ TOML – keys in square brackets
○ XML/HTML – opening and closing tags for nested

content
○ ASN.1 – Capital letters

● StrictDoc's implementation is not hard-coded to .SDoc

Licensed under CC-BY-SA-3.0

Zephyr, SPDX and StrictDoc
● FOSDEM 2023 - Using SPDX for functional safety
● Collaboration with the Zephyr Safety Working Group since 2023 Q2
● Zephyr's requirements are written using StrictDoc
● The group is working on understanding and structuring the requirements,

relating them to the source code and other artifacts of Zephyr

● StrictDoc interfaces to Zephyr:
○ SDoc files and Zephyr design documentation
○ SDoc files and Zephyr source files (under discussion)
○ StrictDoc-produced SPDX file that connects to the parent Zephyr SPDX

Licensed under CC-BY-SA-3.0

Live demo
● StrictDoc
● Zephyr requirements

Licensed under CC-BY-SA-3.0

How StrictDoc supports Safety
● Create and manage technical documentation with requirements
● Traceability matrix for all artifacts
● Tracing requirements to source files
● Project statistics report
● Search query engine
● Diff and changelog
● Publishing standalone HTML and PDF documents
● ReqIF support for requirements exchange
● SPDX interface (joined the SPDX FuSa working group)

And other features, see StrictDoc's Roadmap (SVG).

https://raw.githubusercontent.com/strictdoc-project/strictdoc/main/docs/_assets/StrictDoc_Roadmap.drawio.svg

Licensed under CC-BY-SA-3.0

Backup: StrictDoc – Technical details
● Requirements are stored in text files
● Git-controlled storage of requirements and source code
● The SDoc language is constructed using textX grammar
● Text markup – RST (other formats planned)
● Arbitrary nodes are supported (Requirement, Test, Assumption, etc.)
● Extensible document grammars, custom fields and relations
● The static HTML export and the dynamic web UI use the same templates
● ReqIF library is a satellite project of StrictDoc
● The software stack is lightweight
● Make maximum use of Git but also explore graph databases

Licensed under CC-BY-SA-3.0

Conclusions

Using a SPDX Safety Profile

● Provides a complete model of dependencies in a safety related project
● Standardized exchange format for a safety case
● Supports effective impact analysis methodologies (input information for FMEA,

Ishikawa Analysis, GSN/SACM etc.)
● Provides reproducible results in both impact analysis and evidence generation
● Formal way to demonstrate completeness after project tailoring and for different

scopes
● …
● …
● …

Licensed under CC-BY-SA-3.0

SPDX Safety Dependencies in a FuSa Project

Requirements

Component
Qualification /
Supply Chain

Validation &
Assessment

Tooling Eval &
Qualification (Dev,
Verification, Build,
Deploy…)

Architecture &
Design

Implementation
(Code)

Unit Verification &
Tests

Integration &
Tests

Software Tests

Documentation
Management Plan

Configuration
Management Plan

Requirements
Management Plan

Reports

Reports

Reports

Functional Safety
Management Plan

SPECIFICATION_FOR

SPECIFICATION_FOR

REQUIREMENT_FOR

REQUIREMENT_FOR

TEST_OF

TEST_OF

TEST_OF

EVIDENCE_FOR

EVIDENCE_FOR

EVIDENCE_FOR

SPECIFICATION_FOR

Licensed under CC-BY-SA-3.0

Questions?

To join in evolving SPDX safety profile:

● Subscribe to: https://lists.spdx.org/g/spdx-fusa
● StrictDoc: https://github.com/strictdoc-project/strictdoc

Contact:

● Nicole Pappler - nicole@alektometis.com
● Stanislav Pankevich - s.pankevich@gmail.com

https://lists.spdx.org/g/spdx-fusa
https://github.com/strictdoc-project/strictdoc
mailto:nicole@alektometis.com
mailto:s.pankevich@gmail.com

Licensed under CC-BY-SA-3.0

BACKUP SLIDES - MAYBE TO BE USED TO EXPLAIN THE DOCUMENTATION
STRUCTURE

Licensed under CC-BY-SA-3.0

Generate SBOMS when the data is known

Source SBOM
Build SBOM

Deployed SBOM

Runtime SBOM

Design SBOM

Licensed under CC-BY-SA-3.0

SBOM Types - manage your work products

SBOM TYPE DEFINITION

Design SBOM of intended, planned software project or product with included components (some of which may not yet exist)
for a new software artifact.

Source SBOM created directly from the development environment, source files, and included dependencies used to build an
product artifact.

Build
SBOM generated as part of the process of building the software to create a releasable artifact (e.g., executable or
package) from data such as source files, dependencies, built components, build process ephemeral data, and other
SBOMs.

Deployed
SBOM provides an inventory of software that is present on a system. This may be an assembly of other SBOMs that
combines analysis of configuration options, and examination of execution behavior in a (potentially simulated)
deployment environment.

Runtime
BOM generated through instrumenting the system running the software, to capture only components present in the
system, as well as external call-outs or dynamically loaded components. In some contexts, this may also be referred
to as an “Instrumented” or “Dynamic” SBOM.

Analyzed
SBOM generated through analysis of artifacts (e.g., executables, packages, containers, and virtual machine
images) after its build. Such analysis generally requires a variety of heuristics. In some contexts, this may also be
referred to as a “3rd party” SBOM.

Source: Types of Software Bills of Materials (SBOM) published by CISA on 2023/4/21

https://www.cisa.gov/resources-tools/resources/types-software-bill-materials-sbom

Licensed under CC-BY-SA-3.0

Managing set of relevant items with SBOMs

Design SBOM Functional Safety Management (Plans) and Safety Concept

Source SBOM Requirements, Design, Safety Analysis, Source Code, Test Cases

Build SBOM Build Framework, Build configuration and environment data, Test
Framework, Executable, Test Reports

Deploy SBOM Deployed configuration and environment data, Hardware architecture
specific information and data, deployment tests and reports

Runtime SBOM Runtime relevant data (configuration data), training data, error logging
data

Licensed under CC-BY-SA-3.0

SPDX Relationships to Clarify Dependencies

4
3

DESCRIBES DEPENDENCY_OF PREREQUISITE_FOR GENERATES VARIANT_OF

DESCRIBED_BY RUNTIME_DEPENDENCY_OF HAS_PREREQUISITE TEST_OF FILE_ADDED

CONTAINS BUILD_DEPENDENCY_OF ANCESTOR_OF TEST_TOOL_OF FILE_DELETED

CONTAINED_BY DEV_DEPENDENCY_OF DESCENDENT_OF TEST_CASE_OF FILE_MODIFIED

DYNAMIC_LINK OPTIONAL_DEPENDENCY_OF DOCUMENTATION_OF EXAMPLE_OF PATCH_FOR

STATIC_LINK PROVIDED_DEPENDENCY_OF BUILD_TOOL_OF METAFILE_OF PATCH_APPLIED

AMENDS TEST_DEPENDENCY_OF EXPANDED_FROM_ARCHIVE PACKAGE_OF REQUIREMENT_FOR

COPY_OF OPTIONAL_COMPONENT_OF DISTRIBUTION_ARTIFACT DATA_FILE_OF SPECIFICATION_FOR

DEPENDS_ON DEPENDENCY_MANIFEST_OF GENERATED_FROM DEV_TOOL_OF OTHER

For more details see: https://spdx.github.io/spdx-spec/v2.3/relationships-between-SPDX-elements/

https://spdx.github.io/spdx-spec/v2.3/relationships-between-SPDX-elements/

Licensed under CC-BY-SA-3.0

Requirement Traceability

**Plans
Package

Safety
Concept ##

**
Implementation
Guidelines
Package

SPECIFICATION_FOR

##
Specification Package
(Requirements)

<>
Source Package
(Code, Scripts, Docs)

??
Test Package
(Test Spec, Scripts)

REQUIREMENTS _FOR

TEST_OF

SPECIFICATION_FOR

R
EQ

U
IR

EM
EN

TS_FO
R

SPECIFICATION_FOR

SPECIFICATION_FOR GENERATES

Executable

Test Framework

GENERATES Evidence,
reports

Logs

GENERATES

GENERATES

INPUT_OF

EVIDENCE_FOR

Licensed under CC-BY-SA-3.0

Traceability
Requirement to Code to Tests to Evidence

foo.c

<>

Requirement
A.1

##

make

A.1.1 test

??

A.1.2 test

??

A.1.3 test

??

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

Log from
A.1.3 test

!!

Specification file,
requirements,
architecture

##

source file<>

Tests, test
scripts

??

Evidence,
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework

Test framework

Test framework

GENERATES

GENERATES

EVIDENCE_FOR

Licensed under CC-BY-SA-3.0

foo.c

<>##

make

A.1.1 test

??

A.1.2 test

??

A.1.3 test

??

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

Log from
A.1.3 test

!!

Specification file,
requirements,
architecture

##

source file<>

Tests, test
scripts

??

Evidence,
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework

Test framework

Test framework

GENERATES

GENERATES

Bug Fix

Requirement
A.1

EVIDENCE_FOR

Traceability
Requirement to Code to Tests to Evidence

Licensed under CC-BY-SA-3.0

foo.c

<>

make

A.1.1 test

??

A.1.2 test

??

A.1.3 test

??

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

Log from
A.1.3 test

!!

Specification file,
requirements,
architecture

##
source file

<> Tests, test
scripts

??

Evidence,
reports

!!

REQUIREMENTS _FOR

<>

GENERATES

GENERATES

Test framework

Test framework

Test framework

GENERATES

GENERATES

Bug Fix

Requirement
A.1

EVIDENCE_FOR

New
Requirement
From Impact
Analysis

##

##

NR test

?? GENERATES?? Log from
NR test

!!

Test framework

!!

Traceability
New Requirement to Code to Tests to Evidence

Licensed under CC-BY-SA-3.0

##

B.1.1 test

??

B.1.2 test

??

B.1.3 test

??

Log from
B.1.1 test!!

Log from
B.1.2 test

!!

Log from
B.1.3 test

!!

Specification file,
requirements,
architecture

##

source file<>

Tests, test
scripts

??

Evidence,
reports

!!
GENERATES

GENERATES

GENERATES

Bug Fix

Requirement
B.1

EVIDENCE_FOR

foo.c
<>

make

<>

REQUIREMENTS _FOR

##
A.1.1 test

??

A.1.2 test

??

Requirement
A.1

REQUIREMENTS _FOR

Test framework

Log from
A.1.1 test!!

Log from
A.1.2 test

!!

GENERATES

GENERATES

REQUIREMENTS _FOR

GENERATES

Executable
image

GENERATES

Traceability
Code to Requirements to Tests to Evidence

© 2023 The Zephyr Project — Content made available under CC BY-SA 4.0.

• Open source real time operating system

• Developer friendly with vibrant
community participation

• Built with safety and security in mind
• Broad SoC, board and sensor support.

• Vendor Neutral governance

• Permissively licensed - Apache 2.0

• Complete, fully integrated, highly
configurable, modular for flexibility

• Product development ready using LTS
includes security updates

• Certification ready with Zephyr Auditable

Zephyr Project
Open Source, RTOS, Connected, Embedded

Fits where Linux is too big

Kernel

OS Services

Application Services

HAL

3rd Party Libraries

Zephyr OS

Licensed under CC-BY-SA-3.0

Zephyr Project
Software Architectural Element

Zephyr Project:

● Embedded RTOS

● Build system

● Test cases & Test framework

Plus evidences for (safety) systematic capability:

● Functional Safety Management plans

● Safety Analysis

● Completeness, Compliance & (Test & Analysis)
Coverage Evidences

