
1

Converting file systems to support
idmapped mounts

Stéphane Graber
Owner, Zabbly
stgraber@stgraber.org

Aleksandr Mikhalitsyn
Software engineer, Canonical
aleksandr.mikhalitsyn@canonical.com

2

Intro

Idmappings

● caller’s idmapping
○ You always have it, just look into /proc/self/{u,g}id_map

■ 0 0 4294967295
● filesystem’s idmapping (also known as a superblock idmapping)

○ (struct super_block *)->s_user_ns
○ Taken from current_user_ns() on mount() or

fsconfig(FSCONFIG_CMD_CREATE*)
● mount’s idmapping

○ Attached to the mount not super block

3

Caller’s idmapping

● All UID/GIDs from the user space perspective are mapped in accordance
with it
○ stat()
○ getuid()
○ getsockopt(... SO_PEERCRED …)
○ …

● For userspace we have uid_t and gid_t types
○ getuid() -> from_kuid_munged(current_user_ns(), current_uid())

● Internally, we have k{u,g}id_t types
○ make_kuid(user_ns, [uid_t value])
○ setuid(uid_t = 100) -> make_kuid(current_user_ns(), 100) -> kuid_t

value
4

File system’s idmapping

● uid_t i_uid_read(const struct inode *inode)
○ Called on the write path

● void i_uid_write(struct inode *inode, uid_t uid)
○ inode->i_uid = make_kuid(sb->s_user_ns, uid_t value)

5

How it works together
 caller id: u1000

 caller’s idmapping: u0:k10000:r10000

 file system’s idmapping: u0:k0:r4294967295

 mount’s idmapping: u0:v10000:r10000

1. make_kuid(u0:k10000:r10000, u1000) = k11000

2. from_kuid(u0:v10000:r10000, v11000) = u1000

3. make_kuid(u0:k0:r4294967295, u1000) = k1000 (think what happens for
u0:k1000:r1 and for u1000:k0:r1)

4. from_kuid(u0:k0:r4294967295, k1000) = u1000

An inode will be created with UID = 1000

6

How to create idmapped mount

● https://github.com/brauner/mount-idmapped
○ ./mount-idmapped --map-mount b:1000:0:1 /source /idmapped

■ 1000 (file system) -> 0 (idmapped mount)
■ 0 (file system) -> overflowuid[=65534] (idmapped)

● mount --bind -o X-mount.idmap=b:1000:0:1 /source /idmapped
○ Landed into util-linux in Jan 2023

● In both cases, you can use /proc/<pid>/ns/user instead of explicit mapping
definition

● Inside we have: open_tree, mount_setattr (with MOUNT_ATTR_IDMAP),
move_mount

7

https://github.com/brauner/mount-idmapped

8

Current state

File systems with idmap support (6.8-rc2)
1. ext4

2. btrfs

3. xfs

4. *fat

5. f2fs

6. ntfs3

7. squashfs

8. tmpfs

9. erofs

10. Ceph (starting from 6.7)

11. ZFS (out of tree) 9

10

How to port a file system

How to port

● &nop_mnt_idmap -> idmap
● current_fsuid() -> mapped_fsuid()
● Add FS_ALLOW_IDMAP to fs_flags
● … it’s not that simple, unfortunately

11

Things to look at:
● Read code paths

○ i_op->getattr (if fs have one)

○ i_op->permission (if fs have one)

○ i_op->get_acl (*)

○ …

● Write code paths

○ i_op->(mknod|mkdir|symlink|create|atomic_open)

○ i_op->setattr

○ i_op->set_acl

○ …

12

13

Local file systems

Local file systems

As we have everything in the kernel => we have an access to all the data and file
system configuration (mount options) to handle everything properly.

14

15

Remote(-like) file systems

Potential problems

● File system handles UID/GID-based permission checks on the server side

○ fuse: if “default_permissions” mode is not enabled

● File system performs some permission checks in the unusual places, for
example in the i_op->lookup where we don’t have an idmapping passed!
[we do these checks in the generic VFS code, see may_lookup()]

● File system does some UID/GID translation (NFS idmapper, some
fuse-based file systems also support that)

General principle in there is to make all the VFS idmappings-related stuff in the
kernel and never send it over the network. But it’s close to impossible.

16

Example: ceph

17

● Can do some permission checks on the server-side (in some configurations)
in addition to a classical “generic_permission” helper used
○ Obviously, sends UID/GIDs over the wire

● Does permissions checks for almost any operations (including lookup)
○ Only a problem if you have a path-based restrictions in place

● Uses get_current_cred()->fs{u,g}id everywhere
○ We usually expect that once FD is opened, fs uses (struct file

*)->f_cred->...

Example: ceph (what we did)

18

● Did not touch the existing MDS-side permission checks machinery
● Extended on-wire protocol and added two new fields (inode_{u,g}id), which

makes sense for inode-creating requests like symlink, mknod, mkdir,
create/atomic_open
○ Put an id-mapped UID/GID values in there

Example: fuse

19

● Permission checks can be fully offloaded to the user space
● Has a “default_permissions” mode (in-kernel)
● The kernel sends a caller’s fsuid/fsgid with each request

○ these values are used to set ownership on the new inodes

Example: fuse (current approach)

20

● Support only “default_permissions” mode
○ We assume that no extra UID/GID-based checks are performed in the

user space
● Extend fuse protocol and add two additional fields for inode owner

UID/GID
○ Obviously, these fields are mapped in accordance with mount’s

idmapping and based on the caller’s fsuid/fsgid
● Have done (PoC) user space conversions for:

○ overlayfs-fuse
○ cephfs-fuse
○ GlusterFS

21

TODO

Planned

1. fuse (patches are sent)

2. 9pfs

3. virtiofs

22

Thank you! Questions?

23

Stéphane Graber
Owner, Zabbly
stgraber@stgraber.org

Aleksandr Mikhalitsyn
Software engineer, Canonical
aleksandr.mikhalitsyn@canonical.com

Links

1. ceph: support idmapped mounts

2. fuse: basic support for idmapped mounts

3. Documentation/filesystems/idmappings.rst

24

https://lore.kernel.org/linux-fsdevel/20230807132626.182101-1-aleksandr.mikhalitsyn@canonical.com/#r
https://lore.kernel.org/linux-fsdevel/20240108120824.122178-1-aleksandr.mikhalitsyn@canonical.com/#r

