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About Me

● Worked at Garmin since 2009
● Using OpenEmbedded & Yocto Project since 2016 
● Member of the OpenEmbedded Technical Steering Committee (TSC)
● Joshua.Watt@garmin.com
● JPEWhacker@gmail.com
● IRC (OFTC or libera): JPEW
● X/Twitter: @JPEW_dev
● LinkedIn: joshua-watt-dev

mailto:Joshua.Watt@garmin.com
mailto:JPEWhacker@gmail.com
https://twitter.com/JPEW_dev
https://www.linkedin.com/in/joshua-watt-dev


OpenEmbedded and Yocto Project

OpenEmbedded
● Community project
● OpenEmbedded core layer
● Build system (bitbake)

Yocto Project
● Linux Foundation project
● Poky reference distribution
● Runs QA tests
● Manages release schedule
● Provides funding for personnel
● Documentation



A brief overview of how Yocto works
See https://youtu.be/Q5UQUM6zxVU 

https://youtu.be/Q5UQUM6zxVU
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Simplified Build Flow
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SPDX Generation
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SPDX 2 Model
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Problem #1: The "Recipe" SPDX Element is a little strange

● It's really describing how some source code was built
● SPDX 2 only has "Packages" as a thing
● SPDX 3 adds a new "Build" element that describes some build process that 

occurred at a point in time
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Nested Builds
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Build Invocation Information

Three new relationships to describe how a build was invoked:

● hasHost - The host where the build was run (potentially the full SPDX 
document that describes it)

● invokedBy - The user or agent that actually invoked the build
● delegatedTo - Relates a user to the invokedBy user to indicate the build was 

executed on their behalf (e.g. A build service building on behalf of a user)



● SPDX (2) IDs are only valid in the scope of a SPDXDocument
● Documents can only be referenced by other documents with accompanying 

checksum
● This means once you reference an SPDX ID from another document, the 

containing document is "frozen" in time as any changes will invalidate its 
checksum

● This is fine for general usage, but really annoying for intermediate processing
● Merging SPDXDocuments is very difficult due to merging disjointed SPDX ID 

scopes
● "Eh…. just give up and put all the documents in a tarball" ~ Me

Problem #2: SPDXDocument & SPDXID problems



SPDX 3 uses Linked Data 

● SPDX 3 follows the principles of Linked Data
● Objects can have a globally unique spdxid (IRI, URL-ish) which can be 

referenced by anyone (mandatory if the Element can be referenced)
● Since spdxids are globally unique (instead of scoped to a document), linking 

intermediate documents is much easier
● Merging documents is also much easier because there are no namespaces 

(other than anonymous objects)
● End result: SPDX 3 generation in Yocto produces a single merged JSON-LD 

SPDX document for the final Target Image 

https://en.wikipedia.org/wiki/Linked_data


Problem #3: Validation is hard

● We have a lot of documents…. And for some 
reason we put them all in a tarball?

● 100's of MB of data is too much for most 
SPDX 2 validation tools. Our SPDX is often 
larger than the Target Image it describes!

So… Much… Data!



Formal SHACL model

SPDX 3 has a formal SHACL model

● Simplifies validation (especially for large datasets!)
● Bonus: Automatic generation of language bindings from the model (see 

https://github.com/JPEWdev/shacl2code)

https://github.com/JPEWdev/shacl2code


Problem #4: CVE & Vulnerability tracking

● SPDX 2.2 has no mechanism for reporting how vulnerabilities have been 
handled for a package

● We implemented this as supplemental information, but it's very rudimentary 
and not standardized



SPDX 3 Vulnerability reporting

● SPDX 3 implements a complete VEX-compliant encoding for how 
Vulnerabilities have been addressed

● It's complex, but powerful



SPDX 3 VEX Example

PackageCVE
hasAssociatedVulnerability

doesNotAffect
vexVersion: 1.0.0
impactStatement: Code not compiled



Where we are today



SPDX 3 Model

https://drive.google.com/file/d
/17EH2NoQrVdFyaYM6ooV
CGvCbrlslnOZt/view

https://drive.google.com/file/d/17EH2NoQrVdFyaYM6ooVCGvCbrlslnOZt/view?usp=sharing
https://drive.google.com/file/d/17EH2NoQrVdFyaYM6ooVCGvCbrlslnOZt/view?usp=sharing
https://drive.google.com/file/d/17EH2NoQrVdFyaYM6ooVCGvCbrlslnOZt/view?usp=sharing


SPDX 3 Challenges

● Think of the "zero dependency" users (like bitbake)!
● Do we really need any encodings other than JSON-LD?
● Is @context really necessary (it's hard to parse without libraries)



Closing Thoughts

● SPDX 3 has a higher "ceiling" of what we can express
● It should also be much easier to link documents together



More information

Other talks that are specifically about SBoM generation in OpenEmbedded

● https://youtu.be/8X5PWa7A6pY
● https://youtu.be/6zms_qGmVqg
● https://youtu.be/h6PRf4zxnR4

https://youtu.be/8X5PWa7A6pY
https://youtu.be/6zms_qGmVqg
https://youtu.be/h6PRf4zxnR4


Questions?


