
SPDX 3 in the Yocto Project
A case study of migrating from SPDX 2 to SPDX 3

Joshua Watt
FOSDEM 2024

February 4th, 2024

Copyright 2024 Joshua Watt, Creative Commons BY-SA 4.0 International License



About Me

● Worked at Garmin since 2009
● Using OpenEmbedded & Yocto Project since 2016 
● Member of the OpenEmbedded Technical Steering Committee (TSC)
● Joshua.Watt@garmin.com
● JPEWhacker@gmail.com
● IRC (OFTC or libera): JPEW
● X/Twitter: @JPEW_dev
● LinkedIn: joshua-watt-dev

mailto:Joshua.Watt@garmin.com
mailto:JPEWhacker@gmail.com
https://twitter.com/JPEW_dev
https://www.linkedin.com/in/joshua-watt-dev


OpenEmbedded and Yocto Project

OpenEmbedded
● Community project
● OpenEmbedded core layer
● Build system (bitbake)

Yocto Project
● Linux Foundation project
● Poky reference distribution
● Runs QA tests
● Manages release schedule
● Provides funding for personnel
● Documentation



A brief overview of how Yocto works
See https://youtu.be/Q5UQUM6zxVU 

https://youtu.be/Q5UQUM6zxVU


Build Images from Source Code

Policy

Metadata

Source bitbake Target 
Image

Widget



Simplified Build Flow

Host Tools Recipe
Metadata

Source

Native tools & 
Cross 

Compiler

Recipe
Metadata

Source

Target 
Packages Target Image

Recipe
Metadata

SHA256

SHA256SHA256

SHA256



SPDX Generation

Host Tools Recipe
Metadata

Source

Native tools & 
Cross 

Compiler

Recipe
Metadata

Source

Target 
Packages Target Image

Recipe
Metadata

SPDX SPDX

SPDX Deliverable

SPDX



SPDX 2 Model

Image Index 
JSONPackage SPDX

Recipe SPDX

GENERATED_FROM
(recipe)

Recipe SPDX

GENERATED_FROM
(debug source)

BUILD_DEPENDENCY_OF

Package Files
CONTAINS

Source Code
CONTAINS

Runtime SPDX

AMENDS

Package SPDX
RUNTIME_DEPENDENCY_OF

Image SPDX

CONTAINS

OTHER



Problem #1: The "Recipe" SPDX Element is a little strange

● It's really describing how some source code was built
● SPDX 2 only has "Packages" as a thing
● SPDX 3 adds a new "Build" element that describes some build process that 

occurred at a point in time



Build Elements

BuildBuild
dependsOn

File

hasInputs

File

hasOutputs



Build Elements

BuildBuild
dependsOn

File

hasInputs

File

hasOutputs
hasInputs



Nested Builds

Build

Recipe
Build

Recipe
Build

Recipe
Build

ancestorOf

Top Level Invocation by user:
bitbake …



Build Invocation Information

Three new relationships to describe how a build was invoked:

● hasHost - The host where the build was run (potentially the full SPDX 
document that describes it)

● invokedBy - The user or agent that actually invoked the build
● delegatedTo - Relates a user to the invokedBy user to indicate the build was 

executed on their behalf (e.g. A build service building on behalf of a user)



● SPDX (2) IDs are only valid in the scope of a SPDXDocument
● Documents can only be referenced by other documents with accompanying 

checksum
● This means once you reference an SPDX ID from another document, the 

containing document is "frozen" in time as any changes will invalidate its 
checksum

● This is fine for general usage, but really annoying for intermediate processing
● Merging SPDXDocuments is very difficult due to merging disjointed SPDX ID 

scopes
● "Eh…. just give up and put all the documents in a tarball" ~ Me

Problem #2: SPDXDocument & SPDXID problems



SPDX 3 uses Linked Data 

● SPDX 3 follows the principles of Linked Data
● Objects can have a globally unique spdxid (IRI, URL-ish) which can be 

referenced by anyone (mandatory if the Element can be referenced)
● Since spdxids are globally unique (instead of scoped to a document), linking 

intermediate documents is much easier
● Merging documents is also much easier because there are no namespaces 

(other than anonymous objects)
● End result: SPDX 3 generation in Yocto produces a single merged JSON-LD 

SPDX document for the final Target Image 

https://en.wikipedia.org/wiki/Linked_data


Problem #3: Validation is hard

● We have a lot of documents…. And for some 
reason we put them all in a tarball?

● 100's of MB of data is too much for most 
SPDX 2 validation tools. Our SPDX is often 
larger than the Target Image it describes!

So… Much… Data!



Formal SHACL model

SPDX 3 has a formal SHACL model

● Simplifies validation (especially for large datasets!)
● Bonus: Automatic generation of language bindings from the model (see 

https://github.com/JPEWdev/shacl2code)

https://github.com/JPEWdev/shacl2code


Problem #4: CVE & Vulnerability tracking

● SPDX 2.2 has no mechanism for reporting how vulnerabilities have been 
handled for a package

● We implemented this as supplemental information, but it's very rudimentary 
and not standardized



SPDX 3 Vulnerability reporting

● SPDX 3 implements a complete VEX-compliant encoding for how 
Vulnerabilities have been addressed

● It's complex, but powerful



SPDX 3 VEX Example

PackageCVE
hasAssociatedVulnerability

doesNotAffect
vexVersion: 1.0.0
impactStatement: Code not compiled



Where we are today



SPDX 3 Model

https://drive.google.com/file/d
/17EH2NoQrVdFyaYM6ooV
CGvCbrlslnOZt/view

https://drive.google.com/file/d/17EH2NoQrVdFyaYM6ooVCGvCbrlslnOZt/view?usp=sharing
https://drive.google.com/file/d/17EH2NoQrVdFyaYM6ooVCGvCbrlslnOZt/view?usp=sharing
https://drive.google.com/file/d/17EH2NoQrVdFyaYM6ooVCGvCbrlslnOZt/view?usp=sharing


SPDX 3 Challenges

● Think of the "zero dependency" users (like bitbake)!
● Do we really need any encodings other than JSON-LD?
● Is @context really necessary (it's hard to parse without libraries)



Closing Thoughts

● SPDX 3 has a higher "ceiling" of what we can express
● It should also be much easier to link documents together



More information

Other talks that are specifically about SBoM generation in OpenEmbedded

● https://youtu.be/8X5PWa7A6pY
● https://youtu.be/6zms_qGmVqg
● https://youtu.be/h6PRf4zxnR4

https://youtu.be/8X5PWa7A6pY
https://youtu.be/6zms_qGmVqg
https://youtu.be/h6PRf4zxnR4


Questions?


