MiniMill: a miniature Field Mill Electrometer for airborne platforms

Img: NASA Mars Reconnaissance Orbiter

Vasiliki Daskalopoulou, V. Spanakis and Th. Georgiou

FOSDEM^{'24}

Why open source ?

Sensor Assembly & Testing

Can we verify our hypothesis through observations ?

Vertical profiling of the electrical properties

"Hope clouds"

observation."

Frank Herbert,

Dune

Why open-source ?

Challenge & create transparency

Biased reward systems

Concerns on personal recognition

Traditional academic structures

What we found up till then was fairly **closed** ...

Different implementations of miniature fieldmills

Sketchy or non-existent Ο schematics

Harrison et al., 2020

& Cui et al., 2017

Homebrewed stuff

Non portable Ο

Cool project

@ArcAttack/FieldMill-PCB

balloonborne platforms

FOSDEM^{'24}

Ο

MiniMill: Principle of operation & Design

gyro

Low rpms for optimal sensor response

FOSDEM^{'24}

- Periodical screening of a <u>sensing electrode</u>
- The **induced charges** for an effective sensing area S(t):

$$Q(t) = \sum_{S} q = \varepsilon_0 ES(t)$$

S depends on the circular sector angle

and the **induced current** directly related to the **vertical E-field** will be:

$$E(t) = \varepsilon_0 E \frac{dS(t)}{dt}$$

 Measured voltage is twice the amplified output voltage from each electrode (differential measurement)

MiniMill: Principle of operation & Design

FOSDEM^{'24}

⁺eventually not deployed due to parasitic fields

Sensor specs & limitations

With thermal shielding

79mm

FOSDEM²⁴

E-field strength (V m⁻¹) (during radiosonde ascend /descend)

<u>Pros</u>

- ✓ Robust design; easy to reproduce; low-cost (~ 100€ each)
- Lightweight (~ 300gr) ; disposable
- Direct measurement; angular position measurements
- Sensitivity ± 2.3 mV per V m⁻¹; range ± 2.4 kV

Cons (cur. design)

- Bulky electronics
- * slightly overestimates E-field (parasitic fields, horizontal slide or $E_{x,y}$ components)
- Limited operation temperature at 50°C
- × Max. altitude of operation ~ 16 Km due to motor/battery freeze

Calibration tests (completed)

i. Hard vibration test, ii. Temperature resilience, iii. FW response vs commercial Fieldmill, iv. Faraday cage response, v. parallel plates calibration & vi. test radiosonde flight

Easily tethered to Small Unmanned Aircrafts (SUAs)

Standard calibration set-up

Parallel plates with fixed voltage input

Telemetry through UART

FOSDEM^{'24}

Mass production for experimental campaigns

Preparatory ASKOS experiment

(due to battery decay)

FOSDEM '24

Data sharing platforms

Full repo: https://github.com/NOA-ReACT/electricity-sensors

publicly available

zenodo

Do contribute !

publicly available

- **Standardization Issues:** lack of it may lead to variations in sensor specs, affect reliability and consistency of collected data.
- **Documentation Quality:** crucial for project success. Incomplete or unclear documentation can hinder the assembly process, especially for those not familiar with the specific hardware.
- **Technical Expertise:** for sensors assembly might be required. Ensuring that contributors or users have access to adequate support and resources for troubleshooting technical issues is crucial.
- **Data Calibration and Validation:** for regulatory compliance with research organizations
- **Funding Constraints:** often on limited budgets testing, and QC can be a challenge, impacting the overall success.
- Long-Term Support: addressing hardware issues, releasing updates, and ensuring ongoing compatibility with evolving technologies.

FOSDEM '24

Eventually, do we answer the sc. initial question ?

Yes, **MiniMill** current version produced fairly nice results !

In retrospect:

Electrical Properties seem to **not play a significant role** on the long-range transport of desert dust **\$\Frac{1}{7}\$**

Thank you... all !

vdaskalop@noa.gr

@ModusElectrificus

MiniMill specs

Baud Rate			Dynamic range	
Pre Radiosonde	115200		single sensitive channel	
On Radiosonde	9600	8 data bits, no parity, one stop bit (8N1)		
				_
			Noise	
RPMs:			Zero field error	~ 2mV
~ 40 Hz	2400 (average)		Field uncertainty	± 3V/m
	_			_
Sampling Rate			Sensitivity	1 ADC cnt, ± 2.3mV per V/m
Pre Radiosonde	9500 Samples Per Second			
On Radiosonde	1 Sample Per Second		Resolution	0 - 1024 ADC cnts, ± 2.4kV
	_			
Modes:			Accuracy	1 ADC cnt
1) w/ Accelerometer	MPU6050 - Triple Axis Gyroscope & Accelerometer IMU			
No rotational information				
			Bandwidth (dB)	through UART
	_			Radiosonde defined bandwidth
Motor:	FlyCat 2204/	260kV Brushless Motor	Physical	
			Mass	250 gr
			Power	9V batteries (DC in)
Speed controller:	XXD HW30A	30A Brushless Motor ESC	Cosumption	< 160mA
PCB type:	multilayered		Electrode Deck	
PCB1	PTH, 70X70m	nm, FR4 1mm, 35μm	Radius	45mm
PCB/Electrode	Electrode De	ck with copper plating		
Microcontroller type			Shutter	
Arduino Nano CH340			Radius	5.83cm
			Thickness	1mm
			Distance from the Electro	(4mm
Operating environment	(implemente	d configuration)		
Temperature	up to - 40°C		Cube Dimensions:	
Altitude	msl to ~ 13k	m	Height	79mm
Humidity	to 100%		Length	76mm

Width

76mm

Ion attachment dominates in the case of transported dust layers

New developments for Vertical profiling: Space Charge sensor

With **hollow** brass electrode

Nicoll et al., 2013, 2011

FOSDEM^{'24}

Charge density (C m⁻³) & **E-field strength** (V m⁻¹)

(during radiosonde ascend /descend)

GitHub: @NOA-ReACT/electricity-sensors

Pros

- easy to reproduce; low-cost; disposable
- ✓ Single spherical electrode; regular de-charging
- Indirect measurement (can provide a better estimation of E-field)
- ✓ Sensitivity ± 2.3 mV per V m⁻¹; Resolution ± 2.3 mV; Accuracy <0.5%</p>

<u>Cons</u>

- Induced + particle charges
- Extensive calibration periods;

Calibration tests (completed)

- i. Hard vibration test, ii. Temperature resilience, iii. FW
 response vs commercial Fieldmill, iv. Faraday cage response,
 v. parallel plates calibration & vi. test radiosonde flight
- Tethered to MiniMill for balloon-borne launches

MiniMill and Charge sensor parallel post-processing

Electrical Profiling comparison to meteorological parameters

FOSDEM^{'24}

Correlation of the E-field to wind direction \rightarrow New methodology for data processing

Electrified dust layers detection with Ground-based Methods

00:00

10

21:00

.8:00

24:00

✓ First ever synergistic measurements between a lidar and a ground-based fieldmill

Electrically active

Electrically inactive or **small charge separation**

