
Simon Kuenzer
Project Founder & Lead Maintainer

CTO & Co-Founder
Unikraft GmbH
simon@unikraft.io

Linux Binary Compatible Unikernels

FOSDEM‘24
February 3, 2024

How your Application runs on Unikraft

mailto:simon@unikraft.io


Unikraft: The Unikernel SDK

1



FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft 3© 2024 Unikraft GmbH

Hypervisor

Hardware

Unikernel Primer

■ Single purpose: One application & one target platform
– Flat and single address spac
– Only necessary kernel components
– Small TCB and memory footprint

Apps

OS OS

Shared OS

Hardware

Hypervisor

Hardware

App

OS layer

App

OS layer

Traditional VMs Containers Unikernel VMs

App App

Apps AppsApps



4FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Unikraft’s (Micro)-Library Stack

LI
BC

LA
YE

R

application

PO
SI

X
CO

M
PA

T 
LA

YE
R

O
S 

PR
IM

IT
IV

ES
LA

YE
R

PL
AT

FO
RM

LA
YE

R

musl newlib

syscall-shim

posix-fdtab posix-process pthread…
posix-socket vfscore

lw
ip

NW
 S

TA
CK

S

m
tc

p

uknetdev
9p

fs
FI

LE
SY

ST
EM

S

ra
m

fs
ukblockdev

ex
t4

uksched

uk
pr

ee
m

pt

SC
HE

DU
LE

RS

uk
co

op

ukboot

dy
na
m
icb

oo
t

BO
OT

ER
S

uk
co

op

ukalloc

bu
dd

ya
llo
c

M
EM

 A
LL

OC
AT

OR
S

tin
yu
al
lo
c

tls
f

m
im

al
lo
c

os
ca
sr

KV
M virtio-net

clock
virtio-block

memregion
XE

N

netfront
clock

blockfront
memregion

…



5FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Current project focus: Linux Compatibility

■ Our vision: Seamless application support
à Most software is developed for Linux
à Remove obstacles for running them on Unikraft



6FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

The 2 Approaches for Compatibility

Native
(API-compatible)

Binary compatible
(ABI-compatible)

syscall_shim

posix-process posix-user vfscore posix-mmap

musl elfloader

Ap
pl

ic
at

io
n

Sy
sc

al
l

m
ap

pi
ng

C
om

pa
t

la
ye

r



Loading ELF Binaries

2



8FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Loading ELF Binaries
■ Straight-forward process:

1) Parse & load executable/loader
2) Prepare entrance stack, jump to entrance
3) Interact with system calls

app-
elfloader

Unikraft

syscall_shim

elf_load() SYSCALL
trap handler

ELF application

libc.so



9FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Challenge PIE vs. Non-PIE Executables
■ Non-PIE dictates AS-layout

– Single AS à only one non-PIE app
– Limits area where (uni-)kernel relies

Application space Kernel spaceAS



10FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Challenge PIE vs. Non-PIE Executables
■ Non-PIE dictates AS-layout

– Single AS à only one non-PIE app
– Limits area where (uni-)kernel relies

■ PIE provides AS-layout flexibility
– Multiple apps in single AS possible
– No AS-switch on context switches

Application space Kernel spaceAS



11FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Challenge PIE vs. Non-PIE Executables
■ Non-PIE dictates AS-layout

– Single AS à only one non-PIE app
– Limits area where (uni-)kernel relies

■ PIE provides AS-layout flexibility
– Multiple apps in single AS possible
– No AS-switch on context switches
– Opportunity:

Full-stack ASLR with max. entropy

Application space Kernel spaceAS

AS



12FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Challenge PIE vs. Non-PIE Executables
■ Non-PIE dictates AS-layout

– Single AS à only one non-PIE app
– Limits area where (uni-)kernel relies

■ PIE provides AS-layout flexibility
– Multiple apps in single AS possible
– No AS-switch on context switches
– Opportunity:

Full-stack ASLR with max. entropy

Application space Kernel spaceAS

AS

Go binaries still commonly built without 
PIE for Linux
Interesting read:
https://rain-1.github.io/golang-aslr.html

Major distros moved to PIE for security 
hardening with ASLR ~5-20 years ago
https://isopenbsdsecu.re/mitigations/pie/
https://wiki.debian.org/Hardening/PIEByD
efaultTransition

https://rain-1.github.io/golang-aslr.html
https://isopenbsdsecu.re/mitigations/pie/
https://wiki.debian.org/Hardening/PIEByDefaultTransition
https://wiki.debian.org/Hardening/PIEByDefaultTransition


13FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Challenge PIE vs. Non-PIE Executables
■ Non-PIE dictates AS-layout

– Single AS à only one non-PIE app
– Limits area where (uni-)kernel relies

■ PIE provides AS-layout flexibility
– Multiple apps in single AS possible
– No AS-switch on context switches
– Opportunity:

Full-stack ASLR with max. entropy

Application space Kernel spaceAS

AS

Go binaries still commonly built without 
PIE for Linux
Interesting read:
https://rain-1.github.io/golang-aslr.html

Major distros moved to PIE for security 
hardening with ASLR ~5-20 years ago
https://isopenbsdsecu.re/mitigations/pie/
https://wiki.debian.org/Hardening/PIEByD
efaultTransition

https://rain-1.github.io/golang-aslr.html
https://isopenbsdsecu.re/mitigations/pie/
https://wiki.debian.org/Hardening/PIEByDefaultTransition
https://wiki.debian.org/Hardening/PIEByDefaultTransition


System Calls

3



15FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

System Call Trap Handler

Switch to 
auxiliary 

stack

Save & 
switch to 

TLS 
register

Handler 
function

Restore 
TLS 

register

Restore 
extended 
registers

jmp

Save 
extended 
registers

(FPU, 
SSE, …)

Switch to 
application 

stack
syscall

*here: x86_64



16FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

System Call Trap Handler

Switch to 
auxiliary 

stack

Switch to 
application 

stack

Restore 
extended 
registers

Save 
extended 
registers

(FPU, 
SSE, …)

Save & 
switch to 

TLS 
register

Restore 
TLS 

register
jmpsyscall Handler 

function

■ Special instruction
– Takes care of protection domain switch (that we do not need)

■ x86_64: jmp instead of sysret because of implicit privilege mode change to ring 3 [1]

[1] P. Olivier, et al., A binary-compatible unikernel, VEE 2019, https://dl.acm.org/doi/10.1145/3313808.3313817

https://dl.acm.org/doi/10.1145/3313808.3313817


17FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

System Call Trap Handler

Switch to 
auxiliary 

stack

Save & 
switch to 

TLS 
register

Restore 
TLS 

register

Restore 
extended 
registers

jmp

Save 
extended 
registers

(FPU, 
SSE, …)

Switch to 
application 

stack
Handler 
functionsyscall

■ Needed to be compliant with Linux ABI:
The system call handler must not require a userland stack

■ In reality: Only needed for apps where userland stack is too small (e.g., go)



18FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

System Call Trap Handler

Switch to 
auxiliary 

stack

Save & 
switch to 

TLS 
register

Restore 
TLS 

register
jmp

Switch to 
application 

stack
Handler 
function

Restore 
extended 
registers

Save 
extended 
registers

(FPU, 
SSE, …)

syscall

■ Needed if we compile Unikraft with full CPU features utilization



19FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

System Call Trap Handler

Switch to 
auxiliary 

stack
jmp

Switch to 
application 

stack
Handler 
function

Restore 
extended 
registers

Save 
extended 
registers

(FPU, 
SSE, …)

Save & 
switch to 

TLS 
register

Restore 
TLS 

register
syscall

■ TLS used as TCB in Unikraft
– Compartmentalization of library implementations

(no central TCB structure definiton needed)



20FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

System Call Trap Handler

Switch to 
auxiliary 

stack
jmp

Switch to 
application 

stack

Restore 
extended 
registers

Save 
extended 
registers

(FPU, 
SSE, …)

Save & 
switch to 

TLS 
register

Restore 
TLS 

register
Handler 
functionsyscall

■ Actual system call handler function



21FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

System Call Trap Handler

Switch to 
auxiliary 

stack
jmp

Switch to 
application 

stack

Restore 
extended 
registers

Save 
extended 
registers

(FPU, 
SSE, …)

Save & 
switch to 

TLS 
register

Restore 
TLS 

register
Handler 
functionsyscall

■ Actual system call handler function

Is there a more 
direct approach?



22FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

vDSO and __kernel_vsyscall()
■ vDSO[1] in Unikraft is a symbol lookup table only

– Within single-AS/single-protection domain we can 
directly execute kernel functions

app-
elfloader

Unikraft

syscall_shim

elf_load()

SYSCALL

trap

libc.so

[1] https://man7.org/linux/man-pages/man7/vdso.7.html
[2] System V Application Binary Interface, 3.2.1 Registers, https://gitlab.com/x86-psABIs/x86-64-ABI

vDSO

ELF application

https://man7.org/linux/man-pages/man7/vdso.7.html
https://gitlab.com/x86-psABIs/x86-64-ABI


23FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

vDSO and __kernel_vsyscall()
■ vDSO[1] in Unikraft is a symbol lookup table only

– Within single-AS/single-protection domain we can 
directly execute kernel functions

■ Resurrect __kernel_vsyscall()
– Origin i386: Switch between int_0x80/sysenter/syscall depending on CPU [1]

– Idea: Use this mechanism to enter Unikraft
■ Normal function call
■ No trap, interrupt or privilege domain change
■ No need to save & restore extended context [2]

app-
elfloader

Unikraft

syscall_shim

elf_load()

SYSCALL

trap

libc.so

[1] https://man7.org/linux/man-pages/man7/vdso.7.html
[2] System V Application Binary Interface, 3.2.1 Registers, https://gitlab.com/x86-psABIs/x86-64-ABI

vDSO

ELF application

vsyscall()

https://man7.org/linux/man-pages/man7/vdso.7.html
https://gitlab.com/x86-psABIs/x86-64-ABI


24FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

vDSO and __kernel_vsyscall()
■ vDSO[1] in Unikraft is a symbol lookup table only

– Within single-AS/single-protection domain we can 
directly execute kernel functions

■ Resurrect __kernel_vsyscall()
– Origin i386: Switch between int_0x80/sysenter/syscall depending on CPU [1]

– Idea: Use this mechanism to enter Unikraft
■ Normal function call
■ No trap, interrupt or privilege domain change
■ No need to save & restore extended context [2]

– Patch application’s libc.so
■ Most syscalls done via libc wrappers

app-
elfloader

Unikraft

syscall_shim

elf_load()

SYSCALL

trap

libc.so

[1] https://man7.org/linux/man-pages/man7/vdso.7.html
[2] System V Application Binary Interface, 3.2.1 Registers, https://gitlab.com/x86-psABIs/x86-64-ABI

vDSO

ELF application

vsyscall()

https://man7.org/linux/man-pages/man7/vdso.7.html
https://gitlab.com/x86-psABIs/x86-64-ABI


25FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

System Call Trap Handler

Switch to 
auxiliary 

stack

Save & 
switch to 

TLS 
register

Handler 
function

Restore 
TLS 

register

Restore 
extended 
registers

jmp

Save 
extended 
registers

(FPU, 
SSE, …)

Switch to 
application 

stack
syscall



26FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

System Call Trap Handler

Switch to 
auxiliary 

stack

Save & 
switch to 

TLS 
register

Handler 
function

Restore 
TLS 

register

Restore 
extended 
registers

jmp

Save 
extended 
registers

(FPU, 
SSE, …)

Switch to 
application 

stack

__
ke

rn
el

_v
sy

sc
al

l

Switch to 
auxiliary 

stack

Save & 
switch to 

TLS 
register

Handler 
function

Restore 
TLS 

register
ret

Switch to 
application 

stack

syscall

Function call __kernel_vsyscall()



The fork Dilemma

4



28FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

The fork Dilemma
■ fork traditionally used for

a) Creating worker processes
b) Instantiating new applications with fork + exec

Low addr

High addr

fork
(copy, 
CoW)

Child
AS

Stack

Parent
AS

Stack

exec

1

2



29FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

The fork Dilemma
■ fork traditionally used for

a) Creating worker processes
b) Instantiating new applications with fork + exec

Low addr

High addr

fork
(copy, 
CoW)

Child
AS

Stack

Parent
AS

Stack

exec

1

2

à Issue: Mechanism relies on per-process ASes



30FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

fork in a Unikernel
■ Single AS: Child must be located at different address range as 

the parent
– Copy&Patching hardly possible without compiler support, 

e.g.,
■ return addresses on the stack
■ absolute pointers

à Worker processes cannot be created this way 😢
luckily, recent software prefer multi-thread model instead

Parent
AR

Child
AR

Low addr

High addr

fork

Stack

Stack

⚡

[1] A. Baumann, et al., A fork() in the road, ACM HotOS’19,
https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf


31FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

fork in a Unikernel
■ Single AS: Child must be located at different address range as 

the parent
– Copy&Patching hardly possible without compiler support, 

e.g.,
■ return addresses on the stack
■ absolute pointers

à Worker processes cannot be created this way 😢
luckily, recent software prefer multi-thread model instead

à Instantiating new application (fork+exec)
– A PIE application can be loaded to any address
– In principle multi-process with single-AS should work

Parent
AR

Child
AR

Low addr

High addr

fork

Stack

Stack

⚡

[1] A. Baumann, et al., A fork() in the road, ACM HotOS’19,
https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf


32FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

fork in a Unikernel
■ Single AS: Child must be located at different address range as 

the parent
– Copy&Patching hardly possible without compiler support, 

e.g.,
■ return addresses on the stack
■ absolute pointers

à Worker processes cannot be created this way 😢
luckily, recent software prefer multi-thread model instead

à Instantiating new application (fork+exec)
– A PIE application can be loaded to any address
– In principle multi-process with single-AS should work

Parent
AR

Child
AR

Low addr

High addr

fork

Stack

Stack

⚡

Is fork-exec-model 
constraining us? [1]

[1] A. Baumann, et al., A fork() in the road, ACM HotOS’19,
https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf


33FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

A Solution: vfork+exec
■ vfork [1]: Shares memory and stack with parent

– No MMU required à we can keep single AS
– Parent is suspended until child exits or calls exec

■ exec: will drop current memory image and launch a
new one from executable

■ à PIE executable loaded to different base address and
executed (elfloader)

[1] https://man7.org/linux/man-pages/man2/vfork.2.html

Parent
AR

Child
AR

Low addr

High addr

exec

Stack

Stack

vfork
1

2

https://man7.org/linux/man-pages/man2/vfork.2.html


34FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

A Solution: vfork+exec
■ vfork [1]: Shares memory and stack with parent

– No MMU required à we can keep single AS
– Parent is suspended until child exits or calls exec

■ exec: will drop current memory image and launch a
new one from executable

■ à PIE executable loaded to different base address and 
executed (elfloader)

à Outlook/Trial: Translate fork+exec to vfork+exec

[1] https://man7.org/linux/man-pages/man2/vfork.2.html

Parent
AR

Child
AR

Low addr

High addr

exec

Stack

Stack

vfork
1

2

https://man7.org/linux/man-pages/man2/vfork.2.html


Risk of Bloat due to
Linux Compatibility

5



36FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Risk of Bloat due to Linux Compatibility
■ Network interfaces and rou1ng (ge1faddr() and co.)

– Need complex subsystem in between: netlink sockets
– Alterna1ve: Provide func1ons directly via the vDSO (trade-off: libc patching)

[1] H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24, https://arxiv.org/pdf/2309.15996.pdf
[2] http://refspecs.linuxfoundation.org/fhs

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs


37FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Risk of Bloat due to Linux Compatibility
■ Network interfaces and rou1ng (ge1faddr() and co.)

– Need complex subsystem in between: netlink sockets
– Alterna1ve: Provide func1ons directly via the vDSO (trade-off: libc patching)

■ Applica1ons relying on specific Linux behaviors
– For example: Preemp1ve scheduling:
■ e.g., frankenphp, mysql, ini3alize thread pools with busy wai3ng

[1] H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24, https://arxiv.org/pdf/2309.15996.pdf
[2] http://refspecs.linuxfoundation.org/fhs

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs


38FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Risk of Bloat due to Linux Compatibility
■ Network interfaces and rou1ng (ge1faddr() and co.)

– Need complex subsystem in between: netlink sockets
– Alterna1ve: Provide func1ons directly via the vDSO (trade-off: libc patching)

■ Applica1ons relying on specific Linux behaviors
– For example: Preemp1ve scheduling:
■ e.g., frankenphp, mysql, ini3alize thread pools with busy wai3ng

■ System call stubbing [1]:
– Not all system calls need a full implementa1on
■ A number of syscalls can be stubbed (fake-it) but applica3on dependent

[1] H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24, https://arxiv.org/pdf/2309.15996.pdf
[2] http://refspecs.linuxfoundation.org/fhs

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs


39FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Risk of Bloat due to Linux Compatibility
■ Network interfaces and rou1ng (ge1faddr() and co.)

– Need complex subsystem in between: netlink sockets
– Alterna1ve: Provide func1ons directly via the vDSO (trade-off: libc patching)

■ Applica1ons relying on specific Linux behaviors
– For example: Preemp1ve scheduling:
■ e.g., frankenphp, mysql, ini3alize thread pools with busy wai3ng

■ System call stubbing [1]:
– Not all system calls need a full implementa1on
■ A number of syscalls can be stubbed (fake-it) but applica3on dependent

■ Filesystem Hierarchy Standard [2]:
– Specific files and file systems (e.g., /proc, /etc) at expected places and behavior

Many of them can resolved by placing files with meaningful content in the VFS

[1] H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24, https://arxiv.org/pdf/2309.15996.pdf
[2] http://refspecs.linuxfoundation.org/fhs

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs


40FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Join us!
■ OSS project

unikraft.org
■ Get started with kraftkit

github.com/unikraft/kraftkit
■ Code & Contributing

github.com/unikraft
■ Follow us on

– Discord: https://bit.ly/UnikraftDiscord
– Twitter: @UnikraftSDK
– LinkedIn: https://linkedin.com/company/unikraft-sdk

https://unikraft.org/
https://github.com/unikraft/kraftkit
https://github.com/unikraft
https://bit.ly/UnikraftDiscord
https://twitter.com/unikraftsdk
https://linkedin.com/company/unikraft-sdk



