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Hypervisor

Hardware

Unikernel Primer

■ Single purpose: One application & one target platform
– Flat and single address spac
– Only necessary kernel components
– Small TCB and memory footprint
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Unikraft’s (Micro)-Library Stack
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Current project focus: Linux Compatibility

■ Our vision: Seamless application support
à Most software is developed for Linux
à Remove obstacles for running them on Unikraft
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The 2 Approaches for Compatibility

Native
(API-compatible)

Binary compatible
(ABI-compatible)
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Loading ELF Binaries
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Loading ELF Binaries
■ Straight-forward process:

1) Parse & load executable/loader
2) Prepare entrance stack, jump to entrance
3) Interact with system calls

app-
elfloader

Unikraft

syscall_shim

elf_load() SYSCALL
trap handler

ELF application

libc.so
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Challenge PIE vs. Non-PIE Executables
■ Non-PIE dictates AS-layout

– Single AS à only one non-PIE app
– Limits area where (uni-)kernel relies

Application space Kernel spaceAS
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Challenge PIE vs. Non-PIE Executables
■ Non-PIE dictates AS-layout

– Single AS à only one non-PIE app
– Limits area where (uni-)kernel relies

■ PIE provides AS-layout flexibility
– Multiple apps in single AS possible
– No AS-switch on context switches

Application space Kernel spaceAS
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Challenge PIE vs. Non-PIE Executables
■ Non-PIE dictates AS-layout

– Single AS à only one non-PIE app
– Limits area where (uni-)kernel relies

■ PIE provides AS-layout flexibility
– Multiple apps in single AS possible
– No AS-switch on context switches
– Opportunity:

Full-stack ASLR with max. entropy

Application space Kernel spaceAS

AS
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Challenge PIE vs. Non-PIE Executables
■ Non-PIE dictates AS-layout

– Single AS à only one non-PIE app
– Limits area where (uni-)kernel relies

■ PIE provides AS-layout flexibility
– Multiple apps in single AS possible
– No AS-switch on context switches
– Opportunity:

Full-stack ASLR with max. entropy

Application space Kernel spaceAS

AS

Go binaries still commonly built without 
PIE for Linux
Interesting read:
https://rain-1.github.io/golang-aslr.html

Major distros moved to PIE for security 
hardening with ASLR ~5-20 years ago
https://isopenbsdsecu.re/mitigations/pie/
https://wiki.debian.org/Hardening/PIEByD
efaultTransition

https://rain-1.github.io/golang-aslr.html
https://isopenbsdsecu.re/mitigations/pie/
https://wiki.debian.org/Hardening/PIEByDefaultTransition
https://wiki.debian.org/Hardening/PIEByDefaultTransition
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System Call Trap Handler
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stack

Save & 
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register

Handler 
function

Restore 
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extended 
registers

(FPU, 
SSE, …)

Switch to 
application 

stack
syscall

*here: x86_64
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System Call Trap Handler

Switch to 
auxiliary 

stack

Switch to 
application 

stack

Restore 
extended 
registers

Save 
extended 
registers

(FPU, 
SSE, …)

Save & 
switch to 

TLS 
register

Restore 
TLS 

register
jmpsyscall Handler 

function

■ Special instruction
– Takes care of protection domain switch (that we do not need)

■ x86_64: jmp instead of sysret because of implicit privilege mode change to ring 3 [1]

[1] P. Olivier, et al., A binary-compatible unikernel, VEE 2019, https://dl.acm.org/doi/10.1145/3313808.3313817

https://dl.acm.org/doi/10.1145/3313808.3313817
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System Call Trap Handler

Switch to 
auxiliary 

stack

Save & 
switch to 

TLS 
register

Restore 
TLS 

register

Restore 
extended 
registers

jmp

Save 
extended 
registers

(FPU, 
SSE, …)

Switch to 
application 

stack
Handler 
functionsyscall

■ Needed to be compliant with Linux ABI:
The system call handler must not require a userland stack

■ In reality: Only needed for apps where userland stack is too small (e.g., go)
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System Call Trap Handler

Switch to 
auxiliary 

stack

Save & 
switch to 

TLS 
register

Restore 
TLS 

register
jmp

Switch to 
application 

stack
Handler 
function

Restore 
extended 
registers

Save 
extended 
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(FPU, 
SSE, …)

syscall

■ Needed if we compile Unikraft with full CPU features utilization
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System Call Trap Handler

Switch to 
auxiliary 

stack
jmp

Switch to 
application 

stack
Handler 
function

Restore 
extended 
registers

Save 
extended 
registers

(FPU, 
SSE, …)

Save & 
switch to 

TLS 
register

Restore 
TLS 

register
syscall

■ TLS used as TCB in Unikraft
– Compartmentalization of library implementations

(no central TCB structure definiton needed)
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System Call Trap Handler
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stack
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■ Actual system call handler function
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System Call Trap Handler

Switch to 
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■ Actual system call handler function

Is there a more 
direct approach?



22FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

vDSO and __kernel_vsyscall()
■ vDSO[1] in Unikraft is a symbol lookup table only

– Within single-AS/single-protection domain we can 
directly execute kernel functions

app-
elfloader

Unikraft

syscall_shim

elf_load()

SYSCALL

trap

libc.so

[1] https://man7.org/linux/man-pages/man7/vdso.7.html
[2] System V Application Binary Interface, 3.2.1 Registers, https://gitlab.com/x86-psABIs/x86-64-ABI

vDSO

ELF application

https://man7.org/linux/man-pages/man7/vdso.7.html
https://gitlab.com/x86-psABIs/x86-64-ABI
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vDSO and __kernel_vsyscall()
■ vDSO[1] in Unikraft is a symbol lookup table only

– Within single-AS/single-protection domain we can 
directly execute kernel functions

■ Resurrect __kernel_vsyscall()
– Origin i386: Switch between int_0x80/sysenter/syscall depending on CPU [1]

– Idea: Use this mechanism to enter Unikraft
■ Normal function call
■ No trap, interrupt or privilege domain change
■ No need to save & restore extended context [2]

app-
elfloader

Unikraft

syscall_shim

elf_load()

SYSCALL

trap

libc.so

[1] https://man7.org/linux/man-pages/man7/vdso.7.html
[2] System V Application Binary Interface, 3.2.1 Registers, https://gitlab.com/x86-psABIs/x86-64-ABI

vDSO

ELF application

vsyscall()

https://man7.org/linux/man-pages/man7/vdso.7.html
https://gitlab.com/x86-psABIs/x86-64-ABI
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vDSO and __kernel_vsyscall()
■ vDSO[1] in Unikraft is a symbol lookup table only

– Within single-AS/single-protection domain we can 
directly execute kernel functions

■ Resurrect __kernel_vsyscall()
– Origin i386: Switch between int_0x80/sysenter/syscall depending on CPU [1]

– Idea: Use this mechanism to enter Unikraft
■ Normal function call
■ No trap, interrupt or privilege domain change
■ No need to save & restore extended context [2]

– Patch application’s libc.so
■ Most syscalls done via libc wrappers

app-
elfloader

Unikraft

syscall_shim

elf_load()

SYSCALL

trap

libc.so

[1] https://man7.org/linux/man-pages/man7/vdso.7.html
[2] System V Application Binary Interface, 3.2.1 Registers, https://gitlab.com/x86-psABIs/x86-64-ABI

vDSO

ELF application

vsyscall()

https://man7.org/linux/man-pages/man7/vdso.7.html
https://gitlab.com/x86-psABIs/x86-64-ABI


25FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

System Call Trap Handler
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System Call Trap Handler
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Function call __kernel_vsyscall()
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The fork Dilemma
■ fork traditionally used for

a) Creating worker processes
b) Instantiating new applications with fork + exec

Low addr

High addr

fork
(copy, 
CoW)

Child
AS

Stack

Parent
AS

Stack

exec

1

2
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The fork Dilemma
■ fork traditionally used for

a) Creating worker processes
b) Instantiating new applications with fork + exec

Low addr

High addr

fork
(copy, 
CoW)

Child
AS

Stack

Parent
AS

Stack

exec

1

2

à Issue: Mechanism relies on per-process ASes
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fork in a Unikernel
■ Single AS: Child must be located at different address range as 

the parent
– Copy&Patching hardly possible without compiler support, 

e.g.,
■ return addresses on the stack
■ absolute pointers

à Worker processes cannot be created this way 😢
luckily, recent software prefer multi-thread model instead

Parent
AR

Child
AR

Low addr

High addr

fork

Stack

Stack

⚡

[1] A. Baumann, et al., A fork() in the road, ACM HotOS’19,
https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf
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fork in a Unikernel
■ Single AS: Child must be located at different address range as 

the parent
– Copy&Patching hardly possible without compiler support, 

e.g.,
■ return addresses on the stack
■ absolute pointers

à Worker processes cannot be created this way 😢
luckily, recent software prefer multi-thread model instead

à Instantiating new application (fork+exec)
– A PIE application can be loaded to any address
– In principle multi-process with single-AS should work

Parent
AR

Child
AR

Low addr

High addr

fork

Stack

Stack

⚡

[1] A. Baumann, et al., A fork() in the road, ACM HotOS’19,
https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf
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fork in a Unikernel
■ Single AS: Child must be located at different address range as 

the parent
– Copy&Patching hardly possible without compiler support, 

e.g.,
■ return addresses on the stack
■ absolute pointers

à Worker processes cannot be created this way 😢
luckily, recent software prefer multi-thread model instead

à Instantiating new application (fork+exec)
– A PIE application can be loaded to any address
– In principle multi-process with single-AS should work

Parent
AR

Child
AR

Low addr

High addr

fork

Stack

Stack

⚡

Is fork-exec-model 
constraining us? [1]

[1] A. Baumann, et al., A fork() in the road, ACM HotOS’19,
https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf
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A Solution: vfork+exec
■ vfork [1]: Shares memory and stack with parent

– No MMU required à we can keep single AS
– Parent is suspended until child exits or calls exec

■ exec: will drop current memory image and launch a
new one from executable

■ à PIE executable loaded to different base address and
executed (elfloader)

[1] https://man7.org/linux/man-pages/man2/vfork.2.html

Parent
AR

Child
AR

Low addr

High addr

exec

Stack

Stack

vfork
1

2

https://man7.org/linux/man-pages/man2/vfork.2.html
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A Solution: vfork+exec
■ vfork [1]: Shares memory and stack with parent

– No MMU required à we can keep single AS
– Parent is suspended until child exits or calls exec

■ exec: will drop current memory image and launch a
new one from executable

■ à PIE executable loaded to different base address and 
executed (elfloader)

à Outlook/Trial: Translate fork+exec to vfork+exec

[1] https://man7.org/linux/man-pages/man2/vfork.2.html

Parent
AR

Child
AR

Low addr

High addr

exec

Stack

Stack

vfork
1

2

https://man7.org/linux/man-pages/man2/vfork.2.html
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Risk of Bloat due to Linux Compatibility
■ Network interfaces and rou1ng (ge1faddr() and co.)

– Need complex subsystem in between: netlink sockets
– Alterna1ve: Provide func1ons directly via the vDSO (trade-off: libc patching)

[1] H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24, https://arxiv.org/pdf/2309.15996.pdf
[2] http://refspecs.linuxfoundation.org/fhs

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs
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Risk of Bloat due to Linux Compatibility
■ Network interfaces and rou1ng (ge1faddr() and co.)

– Need complex subsystem in between: netlink sockets
– Alterna1ve: Provide func1ons directly via the vDSO (trade-off: libc patching)

■ Applica1ons relying on specific Linux behaviors
– For example: Preemp1ve scheduling:
■ e.g., frankenphp, mysql, ini3alize thread pools with busy wai3ng

[1] H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24, https://arxiv.org/pdf/2309.15996.pdf
[2] http://refspecs.linuxfoundation.org/fhs

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs
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Risk of Bloat due to Linux Compatibility
■ Network interfaces and rou1ng (ge1faddr() and co.)

– Need complex subsystem in between: netlink sockets
– Alterna1ve: Provide func1ons directly via the vDSO (trade-off: libc patching)

■ Applica1ons relying on specific Linux behaviors
– For example: Preemp1ve scheduling:
■ e.g., frankenphp, mysql, ini3alize thread pools with busy wai3ng

■ System call stubbing [1]:
– Not all system calls need a full implementa1on
■ A number of syscalls can be stubbed (fake-it) but applica3on dependent

[1] H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24, https://arxiv.org/pdf/2309.15996.pdf
[2] http://refspecs.linuxfoundation.org/fhs

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs
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Risk of Bloat due to Linux Compatibility
■ Network interfaces and rou1ng (ge1faddr() and co.)

– Need complex subsystem in between: netlink sockets
– Alterna1ve: Provide func1ons directly via the vDSO (trade-off: libc patching)

■ Applica1ons relying on specific Linux behaviors
– For example: Preemp1ve scheduling:
■ e.g., frankenphp, mysql, ini3alize thread pools with busy wai3ng

■ System call stubbing [1]:
– Not all system calls need a full implementa1on
■ A number of syscalls can be stubbed (fake-it) but applica3on dependent

■ Filesystem Hierarchy Standard [2]:
– Specific files and file systems (e.g., /proc, /etc) at expected places and behavior

Many of them can resolved by placing files with meaningful content in the VFS

[1] H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24, https://arxiv.org/pdf/2309.15996.pdf
[2] http://refspecs.linuxfoundation.org/fhs

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs


40FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

Join us!
■ OSS project

unikraft.org
■ Get started with kraftkit

github.com/unikraft/kraftkit
■ Code & Contributing

github.com/unikraft
■ Follow us on

– Discord: https://bit.ly/UnikraftDiscord
– Twitter: @UnikraftSDK
– LinkedIn: https://linkedin.com/company/unikraft-sdk

https://unikraft.org/
https://github.com/unikraft/kraftkit
https://github.com/unikraft
https://bit.ly/UnikraftDiscord
https://twitter.com/unikraftsdk
https://linkedin.com/company/unikraft-sdk



