FOSDEM24
February 3, 2024

SaIK@ft

Linux Binary Compatible Unikernels
How your Application runs on Unikraft

Simon Kuenzer

Project Founder & Lead Maintainer

CTO & Co-Founder
Unikraft GmbH

simon@unikraft.io

mailto:simon@unikraft.io

1

Unikraft: The Unikernel SDK

Hypervisor Shared OS Hypervisor

Hardware Hardware Hardware

Traditional VMs Containers Unikernel VMs

m Single purpose: One application & one target platform
- Flat and single address spac
- Only necessary kernel components
- Small TCB and memory footprint

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 3

Unikraft’s (Micro)-Library Stack

application
o ¥ v v .
=z musl newlib
]
=
x < *syscall-shlm*
0 =
<
& S | posix-fdtab][posix-process | ... [pthread |
o)
(©)

OS PRIMITIVES
LAYER

[posix-socket]
(%] + (7]
0 2
s Q E 2l < ‘
= = c 3| & = e 2 = oc
z | = S S| | 8| @ 4 | a i o Olollo
w - o = o o I<—E Ol e 8
o | E||l o ol|lall|lo S == Ol 5
w o o o | L o Ool8|lw|l%|l ol ®
5 Qv Qo o £ o 2l 2=l 8
v v - > 0
21203 slI3||IZ15]E €l °
= > S |all*
© [T
) U | s U
S ~ — = ¥ v
S (Lvirtio-net J (virtio-block]| | % (__netfront] (_blockfront]
[X N]
(clock J[memregion | [clock |“memregion)

PLATFORM
LAYER

FOSDEM24 February 3, 2024

Linux Binary Compatible Unikernels with Unikraft

© 2024 Unikraft GmbH

4

Current project focus: Linux Compatibility

m Our vision: Seamless application support
- Most software is developed for Linux
- Remove obstacles for running them on Unikraft

FOSDEM24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

5

The 2 Approaches for Compatibility

c TN
9 . . .
g Native Binary compatible
g (APl-compatible) (ABl-compatible)
) , |
musl elfloader

AT AN
®© .S

3 & syscall_shim

> ©

S

\

pPOSiX-process posix-user viscore posix-mmap

Compat
layer

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

2

Loading ELF Binaries

Loading ELF Binaries

m Straight-forward process:
1) Parse & load executable/loader libc.so
2) Prepare entrance stack, jump to entrance
3) Interact with system calls ELF application

| | SYSCALL

trap handler

elf_load()

app-

elfloader syscall_shim

Unikraft

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 8

Challenge PIE vs. Non-PIE Executables

m Non-PIE dictates AS-layout
- Single AS - only one non-PIE app
- Limits area where (uni-)kernel relies

AS ' Application space Kernel space

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

9

Challenge PIE vs. Non-PIE Executables

m Non-PIE dictates AS-layout
- Single AS - only one non-PIE app
- Limits area where (uni-)kernel relies

AS ' Application space Kernel space

m PIE provides AS-layout flexibility
- Multiple apps in single AS possible
- No AS-switch on context switches

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 10

Challenge PIE vs. Non-PIE Executables

m Non-PIE dictates AS-layout
- Single AS - only one non-PIE app
- Limits area where (uni-)kernel relies

AS ' Application space Kernel space

m PIE provides AS-layout flexibility
- Multiple apps in single AS possible
- No AS-switch on context switches

- Opportunity:
Full-stack ASLR with max. entropy

N EIN HE

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 11

AS

Challenge PIE vs. Non-PIE Executables

: Go binaries still commonly built without
m Non-PIE dictates AS-layout PIE for Linux

- Single AS - only one non-PIE app Interesting read:
- Limits area where (uni-)kernel relies

AS ' Application space Kernel space

m PIE provides AS-layout flexibility h/';igg rﬂf;rsvﬁth\éeLthg 5P-I2E0f§; :rescggéy

- Multiple apps in single AS possible
- No AS-switch on context switches

- Opportunity:
Full-stack ASLR with max. entropy

DU BN BN E

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 12

AS

https://rain-1.github.io/golang-aslr.html
https://isopenbsdsecu.re/mitigations/pie/
https://wiki.debian.org/Hardening/PIEByDefaultTransition
https://wiki.debian.org/Hardening/PIEByDefaultTransition

Challenge PIE vs. Non-PIE Executables

: Go binaries still commonly built without
m Non-PIE dictates AS-layout PIE for Linux

- Single AS - only one non-PIE app Interesting read:
Limits area where (uni-)kernel relies

AS ' Application space Kernel space

= PIE provides AS-layout flexibility h";lgé rﬂfgsﬁtméid;g g’_'onf}?;:rescggLy
- Multiple apps in single AS possible
- No AS-switch on context switches

- Opportunity:
Full-stack ASLR with max. entrop

AS

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 13

https://rain-1.github.io/golang-aslr.html
https://isopenbsdsecu.re/mitigations/pie/
https://wiki.debian.org/Hardening/PIEByDefaultTransition
https://wiki.debian.org/Hardening/PIEByDefaultTransition

3

System Calls

System Call Trap Handler

Save Save &
Switch to extended . Restore Restore Switch to
switch to Handler

syscall auxiliary registers TLS extended g application

TLS function

stack (FPU, :
register

SSE, ...)

register registers stack

*here: x86 64

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 15

System Call Trap Handler

m Special instruction
- Takes care of protection domain switch (that we do not need)

m x86_64: jmp instead of sysret because of implicit privilege mode change to ring 3 [1]

[1] P. Olivier, et al., A binary-compatible unikernel, VEE 2019, hiips://dl.acm.org/doi/10.1145/3313808.3313817

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 16

https://dl.acm.org/doi/10.1145/3313808.3313817

System Call Trap Handler

Switch to Switch to
auxiliary application
stack stack

m Needed to be compliant with Linux ABI:
The system call handler must not require a userland stack

m In reality: Only needed for apps where userland stack is too small (e.g., go)

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

17

System Call Trap Handler

Save
extended Restore
> registers extended >
(FPU, registers
SSE, ...)

m Needed if we compile Unikraft with full CPU features utilization

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 18

System Call Trap Handler

Save &

switch to Restore

> > TLS TLS > >

register

register

m LS usedas TCB in Unikraft

- Compartmentalization of library implementations
(no central TCB structure definiton needed)

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 19

System Call Trap Handler

m Actual system call handler function

FOSDEM24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 20

System Call Trap Handler

Handler

function

m Actual system call handler function

°0
© Is there a more
direct approach?

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 21

vDSO and _ kernel_vsyscall()

m VvDSOJ[1] in Unikraft is a symbol lookup table only

- Within single-AS/single-protection domain we can
directly execute kernel functions

[1] https://man7.org/linux/man-pages/man7/vdso.7.html
[2] System V Application Binary Interface, 3.2.1 Registers, hitps:/gitlab.com/x86-psABls/x86-64-ABI

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft

libc.so

ELF application

SYSCALL

elf_load() =

app-

elfloader syscall_shim

Unikraft

© 2024 Unikraft GmbH 22

https://man7.org/linux/man-pages/man7/vdso.7.html
https://gitlab.com/x86-psABIs/x86-64-ABI

vDSO and _ kernel_vsyscall()

m VvDSOJ[1] in Unikraft is a symbol lookup table only

- Within single-AS/single-protection domain we can libc.so
directly execute kernel functions

m Resurrect __kernel_vsyscali() ELF application
- Origin i386: Switch between int_0x80/sysenter/syscall depending on CPU [1]

- |dea: Use this mechanism to enter Unikraft

m Normal function call SYSCALL

m No trap, interrupt or privilege domain change
m No need to save & restore extended context [2] elf_load() vsyscall()

app-
elfloader

syscall_shim

Unikraft

[1] https://man7.org/linux/man-pages/man7/vdso.7.html
[2] System V Application Binary Interface, 3.2.1 Registers, hitps:/gitlab.com/x86-psABls/x86-64-ABI

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 23

https://man7.org/linux/man-pages/man7/vdso.7.html
https://gitlab.com/x86-psABIs/x86-64-ABI

vDSO and _ kernel_vsyscall()

m VvDSOJ[1] in Unikraft is a symbol lookup table only

- Within single-AS/single-protection domain we can libc.so
directly execute kernel functions

m Resurrect __kernel_vsyscali() ELF application
- Origin i386: Switch between int_0x80/sysenter/syscall depending on CPU [1]

- |dea: Use this mechanism to enter Unikraft

m Normal function call SYSCALL

m No trap, interrupt or privilege domain change
m No need to save & restore extended context [2] elf_load() vsyscall()

- Patch application’s libc.so app-
m Most syscalls done via libc wrappers elfloader

syscall_shim

Unikraft

[1] https://man7.org/linux/man-pages/man7/vdso.7.html
[2] System V Application Binary Interface, 3.2.1 Registers, hitps:/gitlab.com/x86-psABls/x86-64-ABI

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 24

https://man7.org/linux/man-pages/man7/vdso.7.html
https://gitlab.com/x86-psABIs/x86-64-ABI

System Call Trap Handler

Save Save &
Switch to extended . Restore
switch to Handler

syscall auxiliary registers TLS

TLS function

stack (FPU, :
register

SSE, ...)

register

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft

Restore Switch to
extended g application
registers stack

© 2024 Unikraft GmbH

25

System Call Trap Handler

Save Save &
Switch to extended

syscall auxiliary registers :
stack (FPU. TLS function

SSE, ...)

switch to Handler Restore Restore Switch to
TLS extended g application

register register registers stack

Function call __kernel_vsyscall()

yscall

Switch to nge < Restore Switch to
auxiliary ' SWitchto R Handler 7LS ¥ application
y TLS function : PP

register stack

stack .
register

®
>I
Q
c
I
Q
X

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 26

4

The fork Dilemma

The fork Dilemma

m fork traditionally used for
a) Creating worker processes
b) Instantiating new applications with fork + exec

Low addr
Parent
AS
Stack
High addr

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft

© 2024 Unikraft GmbH

28

The fork Dilemma

m fork traditionally used for
a) Creating worker processes
b) Instantiating new applications with fork + exec

Low addr
Parent
AS
Stack
High addr

unikraft GmbH

fork in a Unikernel

m Single AS: Child must be located at different address range as Low addr
the parent

- Copy&Patching hardly possible without compiler support,
e.g.,
m return addresses on the stack
m absolute pointers

> Worker processes cannot be created this way @
luckily, recent software prefer multi-thread model instead

[1] A. Baumann, et al., A fork() in the road, ACM HotOS’19, ngh addr
https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 30

https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

fork in a Unikernel

m Single AS: Child must be located at different address range as Low addr
the parent

- Copy&Patching hardly possible without compiler support,
e.g.,
m return addresses on the stack
m absolute pointers

> Worker processes cannot be created this way @
luckily, recent software prefer multi-thread model instead

—> Instantiating new application (fork+exec)
- A PIE application can be loaded to any address
- In principle multi-process with single-AS should work

[1] A. Baumann, et al., A fork() in the road, ACM HotOS’19, ngh addr
https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 31

https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

fork in a Unikernel

m Single AS: Child must be located at different address range as Low addr
the parent

- Copy&Patching hardly possible without compiler support,
e.g.,
m return addresses on the stack
m absolute pointers

> Worker processes cannot be created this way @
luckily, recent software prefer multi-thread model instead

—> Instantiating new application (fork+exec)
- A PIE application can be loaded to any address
- In principle multi-process with single-AS should work

Is fork-exec-model

constraining us? [1]

High addr

[1]1 A. Baumann, et al., A fork() in the road, ACM HotOS’19,
https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 32

https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19.pdf

A Solution: vfork+exec

m Vvfork [1]: Shares memory and stack with parent Low addr
- No MMU required - we can keep single AS
- Parent is suspended until child exits or calls exec O
m exec: will drop current memory image and launch a vfork

new one from executable

m > PIE executable loaded to different base address and
executed (elfloader)

High addr

[1] https://man7.org/linux/man-pages/man2/vfork.2.html
FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 33

https://man7.org/linux/man-pages/man2/vfork.2.html

A Solution: vfork+exec

m Vvfork [1]: Shares memory and stack with parent Low addr
- No MMU required - we can keep single AS
- Parent is suspended until child exits or calls exec O
m exec: will drop current memory image and launch a vfork

new one from executable

m > PIE executable loaded to different base address and
executed (elfloader)

- Outlook/Trial: Translate fork+exec to vfork+exec

High addr

[1] https://man7.org/linux/man-pages/man2/vfork.2.html
FOSDEM‘24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 34

https://man7.org/linux/man-pages/man2/vfork.2.html

<

Risk of Bloat due to
Linux Compatibility

Risk of Bloat due to Linux Compatibility

m Network interfaces and routing (getifaddr() and co.)
— Need complex subsystem in between: netlink sockets
- Alternative: Provide functions directly via the vDSO (trade-off: libc patching)

[1]1 H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24,
[2]

FOSDEM24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 36

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs

Risk of Bloat due to Linux Compatibility

m Network interfaces and routing (getifaddr() and co.)
— Need complex subsystem in between: netlink sockets
- Alternative: Provide functions directly via the vDSO (trade-off: libc patching)

m Applications relying on specific Linux behaviors

— For example: Preemptive scheduling:
m e.g., frankenphp, mysql, initialize thread pools with busy waiting

[1]1 H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24,
[2]

FOSDEM24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 37

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs

Risk of Bloat due to Linux Compatibility

m Network interfaces and routing (getifaddr() and co.)
— Need complex subsystem in between: netlink sockets
- Alternative: Provide functions directly via the vDSO (trade-off: libc patching)

m Applications relying on specific Linux behaviors
— For example: Preemptive scheduling:
m e.g., frankenphp, mysql, initialize thread pools with busy waiting
m System call stubbing [1]:

— Not all system calls need a full implementation
m A number of syscalls can be stubbed (fake-it) but application dependent

[1]1 H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24,
[2]

FOSDEM24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

38

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs

Risk of Bloat due to Linux Compatibility

m Network interfaces and routing (getifaddr() and co.)
— Need complex subsystem in between: netlink sockets
- Alternative: Provide functions directly via the vDSO (trade-off: libc patching)

m Applications relying on specific Linux behaviors

— For example: Preemptive scheduling:
m e.g., frankenphp, mysql, initialize thread pools with busy waiting

m System call stubbing [1]:
— Not all system calls need a full implementation
m A number of syscalls can be stubbed (fake-it) but application dependent

m Filesystem Hierarchy Standard [2]:

- Specific files and file systems (e.g., /proc, /etc) at expected places and behavior
Many of them can resolved by placing files with meaningful content in the VFS

[1]1 H. Lefeuvre, et al., Loupe: Driving the Development of OS Compatibility Layers, ASPLOS’24,
[2]

FOSDEM24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH

39

https://arxiv.org/pdf/2309.15996.pdf
http://refspecs.linuxfoundation.org/fhs

Join us!
m OSS project

m Get started with kraftkit

m Code & Contributing

m Follow us on
- Discord:

- Twitter:
- LinkedIn:

Xen 1 FOIUNND ATON k=l COMPUTING FOUNDATION w'n" Kraftcloud

FOSDEM24 February 3, 2024 Linux Binary Compatible Unikernels with Unikraft © 2024 Unikraft GmbH 40

https://unikraft.org/
https://github.com/unikraft/kraftkit
https://github.com/unikraft
https://bit.ly/UnikraftDiscord
https://twitter.com/unikraftsdk
https://linkedin.com/company/unikraft-sdk

Thank you!

