
Open Podcast API
A NEW API SPECIFICATION ENABLING END-USERS 
TO SYNC EPISODE LISTENING STATUSES & MORE



The problem

Existing de-facto standard

• is no longer actively maintained

• has technical issues & challenges, e.g.:

• episode identification (based on media URL; not unique in RSS wild west)

• feed duplication (feed URL updates not handled adequately)

• is effectively used as centralised service
• overload on server = users facing errors in their apps



The solution

END-USERS

• Synchronise subscriptions, 
listening progress, favourites, 
queues, and more

• Connect all compliant apps and 
online services

• Switch between providers 
without losing any information

DEVELOPERS

• Clear and comprehensive 
documentation for features 
and behaviours

• Reliable specs that are easy to 
implement

• Feature-complete specs that 
are decentralisation-ready

A new API that builds upon the existing solution in a more 
extensible and standards-compliant way



The approach

• Building a new API inspired by the gPodder.net API specs

• gPodder compatibility is not a focus

• Following OpenAPI specification

• Plans for libraries via CI for quick integration (Java, Typescript, PHP, C++, Dart)

• RSS is single source of truth, wherever possible

• E.g. don’t sync episode titles

• E.g. do create & sync true GUID

• Podcasting 2.0 ready

https://gpoddernet.readthedocs.io/en/latest/api/index.html
https://spec.openapis.org/oas/latest


The technical challenges – Episode identification

Issue:

• Hash of combination of <guid>, <link> and <enclosure>?

• Former not always ‘globally unique’ (even within feed), latter not always stable 
(e.g. corrected audio files)

Solution:

• GUID by ‘first discoverer’ of the episode

• Sync first, post later

• Deduplication responsibility of client

More considerations in meeting notes

https://pad.funkwhale.audio/s/T-yx14DsH


The technical challenges – Feature compatibility

Issue:

• Cannot expect all connecting apps/services to support all end-
points & calls, because of different feature sets

Solution:

• Core: every user-facing (web) application expected to offer

• Optional: syncing of data if server supports it

• Documented in the API, core mandatory for ‘compliance’

• Mapping of capabilities to be done



The endpoints

Subscriptions (add, get all/single, update, delete, deletion status)

Versioning (get supported versions, get supported capabilities)

Episodes (add, get all/single, update, …: GUID, status, playback 
position, total time played, last played, metadata changed, …)

Settings

Search

Discovery

Ratings/Reviews



The interested projects

AntennaPod Funkwhale Kasts

Podfriend gPodder Sync 
for Nextcloud

Musicpod

https://github.com/AntennaPod/AntennaPod
https://dev.funkwhale.audio/funkwhale/
https://invent.kde.org/multimedia/kasts
https://github.com/MartinMouritzen/Podfriend
https://github.com/thrillfall/nextcloud-gpodder/
https://github.com/thrillfall/nextcloud-gpodder/
https://github.com/ubuntu-flutter-community/musicpod


The next steps

• Episodes end-point discussions

• Authentication discussions

• New website (easier navigation of specs & end-points)

• Mapping of features across apps (to be supported by API specs)

• ‘Beta implementation’ in a few apps

• Reference server implementation



The contact details

https://github.com/OpenPodcastAPI

https://OpenPodcastAPI.org

#OpenPodcastAPI:matrix.org



The questions



The contact details

https://github.com/OpenPodcastAPI

https://OpenPodcastAPI.org

#OpenPodcastAPI:matrix.org


	Slide 1: Open Podcast API
	Slide 2: The problem
	Slide 3: The solution
	Slide 4: The approach
	Slide 5: The technical challenges – Episode identification
	Slide 6: The technical challenges – Feature compatibility
	Slide 7: The endpoints
	Slide 8: The interested projects
	Slide 9: The next steps
	Slide 10: The contact details
	Slide 11: The questions
	Slide 12: The contact details

