Workflow managers in high-energy physics

Enhancing analyses with Snakemake

Jamie Gooding, TU Dortmund University FOSDEM24 Open Research DevRoom 3rd February 2024

technische universität dortmund

What are workflow managers?

Quite literally "tools to manage workflows"

Workflow managers help to...

- Define a workflow
 (Re-)run a workflow
- Document workflow Organise rules

What are workflow managers?

Quite literally "tools to manage workflows"

Workflow managers help to...

- Define a workflow
 (Re-)run a workflow
- Organise rules
- Document workflow

Snakemake background

- Evolved from GNU Make paradigm
 - Workflow defined from "rules"
 - Directed acyclic graph (DAG) links rules
 - Wildcards enable dynamic workflows
- Python-based language:
 - Shallow learning curve
- Significant ongoing development:
 - v8 released in Dec 2023
- Picked up in HEP over last ~5 years

https://snakemake.github.io/

Mölder F, Jablonski KP, Letcher B, et al., Apr. 2021

What is HEP?

HEP → High Energy Physics

- Physics of the very early of universe
- Accelerate and collide particles
 - LHC built for this purpose
 - Experiments record collisions
- LHCb specialises in differences between *matter* and *anti-matter*

Images: CERN

What is HEP?

HEP → High Energy Physics

- Physics of the very early of universe
- Accelerate and collide particles
 - LHC built for this purpose
 - Experiments record collisions
- LHCb specialises in differences between *matter* and *anti-matter*

- Analyses aim to measure something:
 - A particle's mass, its lifetime, its possible decays
 - Look to contradict Standard Model
- Start with experimental data
- Extract measurement from data:
 - Dedicated scripts for processing
 - Shared, dynamic codebase
- Sizes of analyses can vary

- Analyses aim to measure something:
 - A particle's mass, its lifetime, its possible decays
 - Look to contradict Standard Model
- Start with experimental data
- Extract measurement from data:
 - Dedicated scripts for processing
 - Shared, dynamic codebase
- Sizes of analyses can vary

Results must be reproducible

May need to rerun analysis

- Analyses aim to measure something:
 - A particle's mass, its lifetime, its possible decays
 - Look to contradict Standard Model
- Start with experimental data
- Extract measurement from data:
 - Dedicated scripts for processing
 - Shared, dynamic codebase
- Sizes of analyses can vary

- Results must be reproducible
- May need to rerun analysis

Large scales of data[†]

(Several TB per analysis)

Often stored remotely

- Analyses aim to measure something:
 - A particle's mass, its lifetime, its possible decays
 - Look to contradict Standard Model
- Start with experimental data
- Extract measurement from data:
 - Dedicated scripts for processing
 - Shared, dynamic codebase
- Sizes of analyses can vary

- Results must be reproducible
- May need to rerun analysis

Large scales of data[†]

(Several TB per analysis)

Often stored remotely

Analysis scripts can

change frequently

Must support scripts of many languages/formats

*This will only get larger...

- Analyses aim to measure something:
 - A particle's mass, its lifetime, its possible decays
 - Look to contradict Standard Model
- Start with experimental data
- Extract measurement from data:
 - Dedicated scripts for processing
 - Shared, dynamic codebase
- Sizes of analyses can vary

Results must be reproducible

May need to rerun analysis

Large scales of data[†]

(Several TB per analysis)

Often stored remotely

Analysis scripts can

change frequently

Must support scripts of many languages/formats

Must be scalable and deployable

*This will only get larger...

Snakemake in Analysis

- Snakemake meets these needs!
- Well-established user base in LHCb:
 - Internal expertise → internal training (right)
- Features and functionality suit analyses well:
 - Interface with HPC resources
 - Remote protocol integration

Scalable, deployable workflows

- Include/sub-workflows/modules/wrappers break into smaller files
- Checkpoints for flexible workflow definitions, re-evaluating DAG
- ► ——batch flag divides many jobs from a rule into batches
- Conda environment package requirements

Common snippets

Include/ subworkflows

Partial workflows

Modules

Reusable generic partial workflows

Fine-grained

Distributed computing

- Large data scales require large computing scales!
- Use of clusters for processing, fitting, etc., common
- Snakemake supports common interfaces (see right)
- Submitting rules as cluster jobs is straightforward:
 - Define profile, run with −−profile {profile} flag
 - Resource limits can be set globally/per rule
 - Rules can be specified as local to run locally

Supported frameworks*:

†list is not exhaustive!

Remote file access

- Files usually stored away from institutes:
 - CERN EOS/Worldwide LHC Computing Grid
- remote module provides easy implementation
 - Simply initialise provider and wrap {provider}.remote(path)
 - glob_wildcards and keep_local

Supported protocols*:

HTTP

FTP

SFTP

Supported frameworks*:

*list is not exhaustive!

What do analysts need?

Scalability

- Data scales will skyrocket (see right)
- Experiments growing by O(100) authors each year

Usability

- Analysts not software devs by trade

Functionality

 Closer collaboration between devs and HEP users

ATLAS Collab., 2022 (CERN-LHCC-2022-005)

Implement Ganga as an executer for snakemake #2095

Open egede opened this issue on Jan 16, 2023 · 0 comments

https://github.com/ganga-devs/ganga/issues/2095

Conclusions

- Workflow managers (e.g., Snakemake) deeply useful for research
- These tools meet HEP needs!
 - Functionality in place to leverage HEP resources
 - Use will become unavoidable in very near future (next few years)
- Should capitalise on field-specific user base
 - Room to collaborate on development/training

Useful papers/links

https://snakemake.readthedocs.io/

https://github.com/reallyblaised/ snakemake-tutorial

https://hsf-training.github.io/analysisessentials/snakemake/README.html

> C. Schmitt, B. Yu and T. Kuhr, Sep. 2023, arXiv:2212.01422

Get in touch

@goodingjamie

in/goodingjamie

GoodingJamie (7)

jamie.gooding@cern.ch

Backup

Anatomy of a Snakemake rule

Let's deconstruct a typical Snakemake rule

```
rule rule_A:
 input:
   script = "{script_dir}analyse.py",
    infiles = expand("file{n}.csv", n=range(3)),
   config = rules.rule_B.output.config
  resources:
    mem_mb=200
 threads: 4
 output:
   results = "results.txt"
 shell:
    python {input.script} -- input {input.infiles}
   --config {input.config} --cores {threads}
   --output {output.results}
```

Anatomy of a Snakemake rule

Let's deconstruct a typical Snakemake rule

```
rule rule_A:
 input:
   script = "{script_dir}analyse.py",
   infiles = expand("file{n}.csv", n=range(3));
   config = rules.rule_B.output.config
  resources:
    mem_mb=200
 threads: 4
 output:
   results = "results.txt"
 shell:
    python {input.script} -- input {input.infiles}
   --config {input.config} --cores {threads}
   --output {output.results}
   111111
```

- Path defined as variable
- Expand method generates list of files
- Direct reference to rule output
- Specify memory requirement
- Number of threads per job Scaled down if fewer available

The LHCb Experiment

LHCb Collab., 2014 (LHCB-TDR-015) ECAL HCAL Side View M4 M5 M3 5m M2Magnet RICH2 SciFi Tracker RICH1 Vertex Locator upgrade 15m 20m

Analysis reproducibility

- Recent push for reproducibility in HEP
- Many platforms/frameworks
 - Highlight: REANA (right)
 - Collation of FOSS tools and frameworks for reusable pipelines
 - Tools common between experiments
 - Uses shared CERN infrastructure
- Preservation of analyses is a current hot topic

https://reanahub.io/

