Workflow managers in high-energy physics

Enhancing analyses with

 SnakemakeJamie Gooding, TU Dortmund University FOSDEM24 Open Research DevRoom 3rd February 2024
technische universität dortmund

What are workflow managers?

Quite literally "tools to manage workflows"

Workflow managers help to...

- Define a workflow • (Re-)run a workflow
- Organise rules
- Document workflow

What are workflow managers?

SMARTHEP

Workflow managers help to...

- Define a workflow - (Re-)run a workflow
- Organise rules
- Document workflow

Snakemake background

- Evolved from GNU Make paradigm
- Workflow defined from "rules"
- Directed acyclic graph (DAG) links rules
- Wildcards enable dynamic workflows
- Python-based language:
- Shallow learning curve
- Significant ongoing development:
- v8 released in Dec 2023
- Picked up in HEP over last ~ 5 years

What is HEP?

HEP \rightarrow High Energy Physics

- Physics of the very early of universe
- Accelerate and collide particles
- LHC built for this purpose
- Experiments record collisions
- LHCb specialises in differences between matter and anti-matter

Images: CERN

What is HEP?

HEP \rightarrow High Energy Physics

- Physics of the very early of universe
- Accelerate and collide particles
- LHC built for this purpose
- Experiments record collisions
- LHCb specialises in differences between matter and anti-matter

HEP analyses

- Analyses aim to measure something:
- A particle's mass, its lifetime, its possible decays
- Look to contradict Standard Model
- Start with experimental data
- Extract measurement from data:
- Dedicated scripts for processing
- Shared, dynamic codebase
- Sizes of analyses can vary

HEP analyses

- Analyses aim to measure something:
- A particle's mass, its lifetime, its possible decays
- Look to contradict Standard Model
- Start with experimental data
- Extract measurement from data:
- Dedicated scripts for processing
- Shared, dynamic codebase
- Sizes of analyses can vary

HEP analyses

- Analyses aim to measure something:

Results must be reproducible

- A particle's mass, its lifetime, its possible decays
- Look to contradict Standard Model

Large scales of data ${ }^{+}$
(Several TB per analysis)

- Start with experimental data
 Often stored remotely
- Extract measurement from data:
- Dedicated scripts for processing
- Shared, dynamic codebase
- Sizes of analyses can vary

HEP analyses

- Analyses aim to measure something:

Results must be reproducible

- A particle's mass, its lifetime, its possible decays
- Look to contradict Standard Model

Large scales of data ${ }^{+}$
(Several TB per analysis)

- Start with experimental data

Often stored remotely

- Extract measurement from data:
- Dedicated scripts for processing
- Shared, dynamic codebase

- Sizes of analyses can vary

Must support scripts of
many languages/formats
Must support scripts of
many languages/formats
Analysis scripts can
change frequently

HEP analyses

- Analyses aim to measure something: Results must be reproducible
- A particle's mass, its lifetime, its possible decays
- Look to contradict Standard Model

Large scales of data ${ }^{+}$
(Several TB per analysis)

- Start with experimental data

Often stored remotely

- Extract measurement from data:
- Dedicated scripts for processing
- Shared, dynamic codebase

Must support scripts of many languages/formats

- Sizes of analyses can vary

Must be scalable and deployable

Snakemake in Analysis

Illiit

Snakemake pipelines @ the LHCb experiment at CERN

Workshop on Basic Computing Services in the Physics Department - subMIT
2024-02-02 @ MIT

Blaise Delaney [blaised at mit.edu] Laboratory for Nuclear Science \& IAIFI
https://github.com/reallyblaised/snakemake-tutorial

Scalable, deployable workflows

- Include/sub-workflows/modules/wrappers break into smaller files

Distributed computing

Supported frameworks ${ }^{\dagger}$:

Distributed Resource Management Application API - www.drmaa.org

HICondur

†list is not exhaustive!

Remote file access

What do analysts need?

ATLAS Collab., 2022 (CERN-LHCC-2022-005) and HEP users

Conclusions

Useful papers/links

- Workflow managers (e.g., Snakemake) deeply useful for research
- These tools meet HEP needs!
- Functionality in place to leverage HEP resources
- Use will become unavoidable in very near future (next few years)
- Should capitalise on field-specific user base
- Room to collaborate on development/training
https://snakemake.readthedocs.io/
https://github.com/reallyblaised/ snakemake-tutorial
https://hsf-training.github.io/analysisessentials/snakemake/README.html
C. Schmitt, B. Yu and T. Kuhr, Sep. 2023, arXiv:2212.01422

Get in touch @goodingjamie in/goodingjamie

GoodingJamie
jamie.gooding@cern.ch

Backup

Anatomy of a Snakemake rule

Let's deconstruct a typical Snakemake rule

```
rule rule_A:
    input:
        script = "{script_dir}analyse.py",
        infiles = expand("file{n}.csv", n=range(3)),
        config = rules.rule_B.output.config
    resources:
        mem_mb=200
    threads: 4
    output:
        results = "results.txt"
    shell:
        IIIII
    python {input.script} -- input {input.infiles}
    --config {input.config} --cores {threads}
    --output {output.results}
    |IIII

\section*{Anatomy of a Snakemake rule}

Path defined as variable
input:
script = "\{script_dir\}analyse.py", infiles = expand("file\{n\}.csv", \(n=r a n g e(3))\), config = rules.rule_B.output.config

Expand method generates list of files resources:
mem_mb=200
Direct reference to rule output
threads: 4
output:
results = "results.txt"
shell:
IIIII
python \{input.script\} --input \{input.infiles\}
--config \{input.config\} --cores \{threads\}
--output \{output. results\}

\section*{The LHCb Experiment}

LHCb Collab., 2014
(LHCB-TDR-015)

\author{
REAL-TIME ANALYSISFOR
SCIENCE AND INDUSTRY \\ SCIENCE AND INDUSTRY
}


\section*{Analysis reproducibility}
- Recent push for reproducibility in HEP
- Many platforms/frameworks
- Highlight: REANA (right)
- Collation of FOSS tools and frameworks for reusable pipelines
- Tools common between experiments
- Uses shared CERN infrastructure
- Preservation of analyses is a current hot topic

Analysis Preservation BootCamp @ Valencia
16-18 October 2023
IFIC - Seminario sótano
\begin{tabular}{|l|}
\hline Overview \\
\hline Timetable \\
\hline
\end{tabular}
Timetable
Registration
Participant List Code of Conduct

Learning the tools to make your analysis last to infinity and beyond!```

