

MicroCeph: Get Ceph Up and Running in Minutes

1

Peter Sabaini, Canonical 2024-02-03

😯 Why MicroCeph

- 1. Deploying and operating a Ceph cluster is complex
 - a. Multiple nodes, distributed components and configurations
 - b. Complex bootstrapping procedure
 - c. Complex operation
- 2. Hardware requirements non-trivial,
 - a. I can't just install a package on my laptop and be done
- 3. Operational complexity impacts Ceph adoption among users
 - a. Impacts use of Ceph for focused (but smaller) use-cases

😯 What Is MicroCeph

- Single package Ceph cluster
 - All in one package
 - 4 commands to get a functional cluster
 - Only one node and one disk required

A functional ceph install for testing and labs

sudo snap install microceph sudo microceph cluster bootstrap sudo microceph disk add loop,4G,3 sudo ceph -s

install package
bootstrap initial node
add simulated drives
verify status

MicroCeph: Snap Package

Snap package format

- Isolation: puts all userland in a single package
 - just need kernel and network / block devices
 - consistent environment across operating systems
- Access to host system is confined for safety / security / robustness
- Standardized risk levels: edge, candidate, stable
- Easy to build, easy to distribute

🔅 MicroCeph Arch

- Service management daemon
 - Cluster database (dqlite)
 - Ceph daemons
- CLI talks to service management via API
- Built from standard Ubuntu Ceph .deb LTS packages

MicroCeph Internals: Service API

- Service management daemon exposes API
- All interaction via API
 - Enable/disable/migrate services
 - Query block dev info
 - Add/remove disks
 - Add/remove nodes
 - Change config
 - etc...
- Useful for integration
- CLI is just another API client

MicroCeph Internals

- MicroCeph is built on top of the MicroCluster library
- MicroCluster provides
 - Dqlite: distributed database (RAFT)
 - Cluster membership
 - API framework
- Written in Go

🔅 MicroCeph: Scalability, Performance

- MicroCeph scales down: single node, single disk
- Automatic failure domain rules
 - Manages CRUSH rules to adapt from single-node (OSD-level) to multi-node (host-level) failure domains as clusters grow (or shrink back)
 - -> single node clusters work ootb, and as you scale up you get added safety automatically
- Larger failure domains available via custom CRUSH rules
 - MicroCeph doesn't have a concept of racks or rooms
 - but won't interfere with CRUSH rules that implement wider failure domains
- MicroCeph scale up: primarily bound by RAFT (dqlite)
- Performance: same as Cephs, we're not sitting in the data path for any Ceph operations

MicroCeph: Integrations

- Cloud projects that integrate MicroCeph
 - Sunbeam (OpenStack on K8s)
 - MicroK8s
 - MicroCloud / LXD
- Juju integration: charm-microceph available to integrate into Juju clouds (beta)
- Cl integration: microceph-action provides S3 for Cl

MicroCeph: Demos

Single Node with RGW <u>https://asciinema.org/a/634408</u>

(Demos are at 1.5x speed, 1s max idle to save time)

MicroCeph: Demos

peter@pirx - »

Scaling up https://asciinema.org/a/635478

- Choose risk level
- Add nodes
- Auto-add block devices
- Enable 2nd RGW
- Use encrypted OSD
- Remove OSDs
- Block refreshes

O MicroCeph: Whats Next

- Auto-Clustering via mDNS
- Built-in RGW loadbalancing and HA
- RBD mirroring support

Thank you! Questions?

MicroCeph: Resources

- Source: <u>https://github.com/canonical/microceph</u>
- Docs: <u>https://canonical-microceph.readthedocs-hosted.com/en/reef-stable/</u>
- Talk to us: <u>https://matrix.to/#/#ubuntu-ceph:matrix.org</u>
- Juju charm: <u>https://github.com/canonical/charm-microceph</u>
- MicroStack: <u>https://microstack.run</u>
- MicroCeph GH action: <u>https://github.com/phvalguima/microceph-action</u>