Version control post-Git

Pierre-Etienne Meunier (Coturnix, Pijul)

February 4th, 2023

¥

FOSDEM 2024

Plan

Version control

Our solution

Implementation

Post-git, really?

2/34

What is version control?

» One or more coauthors edit a tree of documents concurrently
» Asynchronous edits: coauthors can choose when they want to “sync” or “merge”
» Edits may conflict

P> Review a project’s history

A solved problem?

Our tools (Git, Hg, SVN, CVS..):

» Aren't used by non-coders, despite their maturity (30 years+)

> Are distributed, yet most of the time used with a global central server:

All paths may not lead to Chrome, but can the same be said for GitHub?
» Require strong work discipline and planning

> Waste significant human worktime at a global scale

Improvements have been proposed (Darcs) but don't really scale.

Is there a quick fix?

> Leaky abstractions: if Merkle trees are the core mechanism, they can't be hidden
from the user.!

» Strict ordering of snapshots is the main feature, yet the most used Git commands
(rebase, rerere, cherry-pick...) are “fixes” around that “feature”.

!Credit: Raphaél Gomeés, Mercurial core team

Some symptoms that it may not be a solved problem

» Inflation of commands and options:
https://git-man-page-generator.lokaltog.net

» Inflation of Uls: even “big tech” is now investing in Git/Mercurial Uls.

» Inflation of forges: how many started in the last year alone? (vs how many text
editors? window managers?)

https://git-man-page-generator.lokaltog.net

Our demands

> Associative merges:

Changes A and B together are the same as
A, followed by B.

» Commutative merges:

If A and B can be produced independently,
their order does not matter.

» Branches (or maybe not: more on that later)

» Low algorithmic complexity, and ideally fast implementations

Associative merges, a.k.a “one-by-one review"

So you think you know Git merge?

3-way merge (Git, Hg, SVN, CVS..) is not associative
Workflow: review your PRs, then merge and then review them again

A
B

G—G A
A— A
B—B

~
\B

A
B

W >0 W

Commutative merges

@
f
!
@ ©

Git and SVN are never commutative, why would we want this?

» Unapplying old changes, even after others have been applied.

» Cherry-picking.

» Partial clones: pull the patches related to a subproject, or merge repos
transparently.

States vs changes

> Git, Hg, SVN, CVS.. store states, and compute changes when needed (3-way
merge).

> What if we did the opposite?

» What if we stored both?

A change-based idea: Operational Transforms

T2 =del(2,"c")
abc
T1=ins(0, “x")
abc
T = del(3, ")

» Darcs does this, and uses it to detect conflicts
» Quadratic explosion of cases

» A nightmare to implement

ab

T1

xab

A hybrid (state/change) approach: CRDTs

» General principle: design a structure where all operations have the properties we
want

P> Natural examples: increment-only counters, insert-only sets...
» More subtle: tombstones, Lamport clocks...
» Useless: a full Git repository (not just HEAD)

Plan

Version control

Our solution

Implementation

Post-git, really?

14/34

Conflicts

> Where we need a good tool the most

» The exact definition depends on the tool

» Example: Alice and Bob write to the same file at the same place

» Example: Alice renames a file from f to g while Bob renames f to h

» Example: Alice renames a function f while Bob adds a call to f

Using category theory

For any two patches f and g, we want a unique state P such that:

Started by Samuel Mimram and Cinzia Di Giusto

Using category theory

For any two patches f and g, we want a unique state P such that:
For any state @ accessible by Alice and Bob after f and g, respectively

Started by Samuel Mimram and Cinzia Di Giusto

Using category theory

For any two patches f and g, we want a unique state P such that:
For any state @ accessible by Alice and Bob after f and g, respectively
There is a patch from P to Q.

If P exists, we call P the pushout of f and g.

Started by Samuel Mimram and Cinzia Di Giusto

Problem: the pushout doesn’t always exist

» Equivalent to saying that conflicts happen.

» How to generalise the representation of states (X, Y, Z) so that all pairs of
changes (f and g) have a pushout?

X

g

Z

Solution: States are directed graphs, where:
> Vertices are bytes (or byte intervals).

> Edges represent the union of all known orders between bytes.

Adding some bytes

» Vertices are labelled by a change number ¢y and an interval (such as [0, n[) in
that change.

P> Edges are labelled by the change that introduced them.

Here, ¢; adds m bytes between positions i — 1 and i of ¢p:

(4]

Cao: D—— @ |Ca - [0.m0>

<

Deleting bytes

Deleting bytes j to i from ¢y, and 0 to k from cy:

1 Co

+
C1 e
Cao 10— a0 |Car [0,m[> Ca: 04D
/¢ (@) 1

That's all we need!

Two kinds of changes:

> Add a vertex, in a context (parents and children)

» Change an edge's label

Our definition of conflicts

> Alive vertices are vertices whose incoming edges are all alive.
» Dead vertices are vertices whose incoming edges are all dead.

» Other vertices are called zombies.

A graph has no conflict if and only if it has no zombie
and all its alive vertices are totally ordered.

Notes

Changes are partially ordered by their dependencies on other changes.
Cherry-picking is the same as applying a patch.
No git rerere: conflicts are solved by changes, which can be cherry-picked.

Partial clones/monorepos/submodules: easy as long as “wide" patches are
disallowed.

Large files: the description of operations (insertions/deletions) is not even stored
in the graph.

Plan

Version control

Our solution

Implementation

Post-git, really?

23/34

Working with large graphs on disk

> We can't load the entire graph each time.
> Store edges in a key-value store.
» Transactions: passive crash-safety.

» Branches: efficiently forkable store.

Introducing Sanakirja, an on-disk transactional KV store

» ACID block allocator in a file

» Crash-safety using referential transparency and copy-on-write.

» Forkable in O(log n), where n is the total size.

» Written in Rust, allowing direct pointers to generic types stored in the file.

» Generic underlying storage layer: we've used it on memory-mapped files,
zstd-compressed files, Cloudflare KV...

» But: tricky API, conflicting with most aspects of the Rust memory model (not
completely avoidable).

Sanakirja is the fastest we've tested

> Performance of retrieval (get) and insertion (put) into a B tree.
» Not specific to Pijul.

Get Put

35
—— Sanakirja get 120 — Sanakirja put
—— Std get —— Std put
309 — LMDB get —— LMDB put
—— Sled get 1001 — Sled put
25
80
.20 -
0 C)
v P
£ g 60
F 15 F
40
10
20
5
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Sanakirja is the fastest we've tested

> Performance of retrieval (get) and insertion (put) into a B tree.
» Not specific to Pijul.

Get

Put
121 — sanakirja get -
17.54 —— Sanakirja put
— Std get —— std put
10 — LMDBget 15,04 — LMDB put
125
8
) 7 100
2 P
E° £
Fos
44
5.0
5] 25
ol 0.0
1 2 3 4 5 6 7 8

Size 1le6

Modular databases

» Sanakirja is actually just a transactional block allocator with reference-counting
included.

» | have built on-disk R trees, Patricia trees (text search!), Ropes.

» Composite types: Pijul stores branches as (roughly) a BTree<String,
BTree<Vertex, Edge>>.

| have a prototype text editor with forkable files, its type is BTree<String,
(Rope, BTree<Vertex, Edge>)>.

Interested in datastructures and performance challenges? Join us!

Plan

Version control

Our solution

Implementation

Post-git, really?

28/34

Things we get for free

Superfast pijul credit?: info readily available in the graph
Have your bugfixes on your main branch.

Submodules for free: changes on unrelated projects are commutative!

vvyyypy

Signing + identity: your identity is your public key. Patches signed by default,
identity (email/name/...) changes for free.

v

Free cherry-picking: just apply that patch, no need to change its identity.

v

Almost free scalability, no Rube Goldberg machine needed.

2Stop blaming your coauthors!

Commutative state identifiers

> We want to check repo states equality, even with different orders.

» We want to compute each state identifier in constant time from the previous state
id and a patch.

> We want states to be hard to forge.

Solution: discrete log on elliptic curves!

Turn each patch identity h into an integer, and have the state with patches
ho, hi, ..., h, be identified by efo-f-hn.

Towards a hybrid state/patch system

» In Git/SVN/CVS/Hg, commits are states, not changes, even though patches can
be applied and recomputed.

» Darcs only has changes, and recomputes states as needed.

» Pijul has both: a data structure modelling the current state, but it was found
from the patches and is therefore completely transparent.

Towards a hybrid state/patch system: ongoing projects

» Lightweight tags to add super fast history browsing, while retaining all the good
properties of patches.

Current tags: Sanakirja, but using a compressed file as a backend rather than the
raw disk.

» Patch groups, i.e. keywords to describe features, allowing patches on the same
branch to be handled (pushed) independently, even when interspersed with others.

» Cues to avoid half-merged states when merging a series of patches.

Help us!

P This is currently a large project with a small team, but proper maths can make
that work.

» Bootstrapped (used for itself) since 2017.
» Documentation, accessibility, Ul, bikeshedding...

> “Good first bugs” tags on nest.pijul.com/pijul/pijul to get acquainted with our
codebase.

> https://pijul.zulipchat.com

https://pijul.zulipchat.com

Conclusion

» Open Source version control based on algorithms and theorems.
> Scalable to monorepos and large files.

P Potentially usable by non-coders: parliaments, artists, lawyers,
Sonic Pi composers, LEGO builders...

P> Repo hosting service available: nest.pijul.com

Acknowledgements: Florent Becker, Tankf33der, Rohan Hart, Chris Bailey, Angus Finch...

	Version control
	Our solution
	Implementation
	Post-git, really?
	Conclusion

