
1/34

Version control post-Git

Pierre-Étienne Meunier (Coturnix, Pijul)

February 4th, 2023

FOSDEM 2024



2/34

Plan

Version control

Our solution

Implementation

Post-git, really?



3/34

What is version control?

I One or more coauthors edit a tree of documents concurrently

I Asynchronous edits: coauthors can choose when they want to “sync” or “merge”

I Edits may conflict

I Review a project’s history



4/34

A solved problem?

Our tools (Git, Hg, SVN, CVS…):

I Aren’t used by non-coders, despite their maturity (30 years+)

I Are distributed, yet most of the time used with a global central server:

All paths may not lead to Chrome, but can the same be said for GitHub?

I Require strong work discipline and planning

I Waste significant human worktime at a global scale

Improvements have been proposed (Darcs) but don’t really scale.



5/34

Is there a quick fix?

I Leaky abstractions: if Merkle trees are the core mechanism, they can’t be hidden
from the user.1

I Strict ordering of snapshots is the main feature, yet the most used Git commands
(rebase, rerere, cherry-pick…) are “fixes” around that “feature”.

1Credit: Raphaël Gomès, Mercurial core team



6/34

Some symptoms that it may not be a solved problem

I Inflation of commands and options:
https://git-man-page-generator.lokaltog.net

I Inflation of UIs: even “big tech” is now investing in Git/Mercurial UIs.

I Inflation of forges: how many started in the last year alone? (vs how many text
editors? window managers?)

https://git-man-page-generator.lokaltog.net


7/34

Our demands

I Associative merges:

Changes A and B together are the same as
A, followed by B.

I Commutative merges:

If A and B can be produced independently,
their order does not matter.

I Branches (or maybe not: more on that later)
I Low algorithmic complexity, and ideally fast implementations



8/34

Associative merges, a.k.a “one-by-one review”

A

B C

ABC

A

B C

AB ABC

=



9/34

So you think you know Git merge?

3-way merge (Git, Hg, SVN, CVS…) is not associative
Workflow: review your PRs, then merge and then review them again

A
B

G
A
B

A
B
G
A
B

A

B
X

A
X
B
G
A
B



10/34

Commutative merges

A

B

AB

B A

=

Git and SVN are never commutative, why would we want this?

I Unapplying old changes, even after others have been applied.
I Cherry-picking.
I Partial clones: pull the patches related to a subproject, or merge repos

transparently.



11/34

States vs changes

I Git, Hg, SVN, CVS… store states, and compute changes when needed (3-way
merge).

I What if we did the opposite?

I What if we stored both?



12/34

A change-based idea: Operational Transforms

abc

xabc

ab

xab

T1 = ins(0, “x”)

T2 = del(2, “c”)

T2′ = del(3, “c”)

T1

I Darcs does this, and uses it to detect conflicts
I Quadratic explosion of cases
I A nightmare to implement



13/34

A hybrid (state/change) approach: CRDTs

I General principle: design a structure where all operations have the properties we
want

I Natural examples: increment-only counters, insert-only sets…
I More subtle: tombstones, Lamport clocks…
I Useless: a full Git repository (not just HEAD)



14/34

Plan

Version control

Our solution

Implementation

Post-git, really?



15/34

Conflicts

I Where we need a good tool the most

I The exact definition depends on the tool

I Example: Alice and Bob write to the same file at the same place

I Example: Alice renames a file from f to g while Bob renames f to h

I Example: Alice renames a function f while Bob adds a call to f



16/34

Using category theory

For any two patches f and g , we want a unique state P such that:

For any state Q accessible by Alice and Bob after f and g , respectively
There is a patch from P to Q.

X Y

Z P

g

f

Q∀

∀

∃

If P exists, we call P the pushout of f and g .

Started by Samuel Mimram and Cinzia Di Giusto



16/34

Using category theory

For any two patches f and g , we want a unique state P such that:
For any state Q accessible by Alice and Bob after f and g , respectively

There is a patch from P to Q.

X Y

Z P

g

f

Q∀

∀

∃

If P exists, we call P the pushout of f and g .

Started by Samuel Mimram and Cinzia Di Giusto



16/34

Using category theory

For any two patches f and g , we want a unique state P such that:
For any state Q accessible by Alice and Bob after f and g , respectively
There is a patch from P to Q.

X Y

Z P

g

f

Q∀

∀

∃

If P exists, we call P the pushout of f and g .

Started by Samuel Mimram and Cinzia Di Giusto



17/34

Problem: the pushout doesn’t always exist

I Equivalent to saying that conflicts happen.
I How to generalise the representation of states (X , Y , Z) so that all pairs of

changes (f and g) have a pushout?

X Y

Z P

g

f

Solution: States are directed graphs, where:
I Vertices are bytes (or byte intervals).
I Edges represent the union of all known orders between bytes.



18/34

Adding some bytes

I Vertices are labelled by a change number c0 and an interval (such as [0, n[) in
that change.

I Edges are labelled by the change that introduced them.

Here, c1 adds m bytes between positions i − 1 and i of c0:

c0 : [0, n[

c0 : [0, i[

c0 : [i , n[

c1 : [0,m[c0

c1

c1



19/34

Deleting bytes

Deleting bytes j to i from c0, and 0 to k from c1:

c0 : [0, n[

c0 : [0, i[

c0 : [i , n[

c1 : [0,m[c0

c1

c1

c0 : [0, j[

c0 : [j, i[

c0 : [i , n[

c1 : [0, k[

c1 : [k,m[

c2

c0

c2

c1

c1



20/34

That’s all we need!

Two kinds of changes:

I Add a vertex, in a context (parents and children)

I Change an edge’s label



21/34

Our definition of conflicts

I Alive vertices are vertices whose incoming edges are all alive.
I Dead vertices are vertices whose incoming edges are all dead.
I Other vertices are called zombies.

A graph has no conflict if and only if it has no zombie
and all its alive vertices are totally ordered.



22/34

Notes

I Changes are partially ordered by their dependencies on other changes.

I Cherry-picking is the same as applying a patch.

I No git rerere: conflicts are solved by changes, which can be cherry-picked.

I Partial clones/monorepos/submodules: easy as long as “wide” patches are
disallowed.

I Large files: the description of operations (insertions/deletions) is not even stored
in the graph.



23/34

Plan

Version control

Our solution

Implementation

Post-git, really?



24/34

Working with large graphs on disk

I We can’t load the entire graph each time.
I Store edges in a key-value store.
I Transactions: passive crash-safety.
I Branches: efficiently forkable store.



25/34

Introducing Sanakirja, an on-disk transactional KV store

I ACID block allocator in a file

I Crash-safety using referential transparency and copy-on-write.

I Forkable in O(log n), where n is the total size.

I Written in Rust, allowing direct pointers to generic types stored in the file.

I Generic underlying storage layer: we’ve used it on memory-mapped files,
zstd-compressed files, Cloudflare KV…

I But: tricky API, conflicting with most aspects of the Rust memory model (not
completely avoidable).



26/34

Sanakirja is the fastest we’ve tested

I Performance of retrieval (get) and insertion (put) into a B tree.
I Not specific to Pijul.

Get Put



26/34

Sanakirja is the fastest we’ve tested

I Performance of retrieval (get) and insertion (put) into a B tree.
I Not specific to Pijul.

Get Put



27/34

Modular databases

I Sanakirja is actually just a transactional block allocator with reference-counting
included.

I I have built on-disk R trees, Patricia trees (text search!), Ropes.

I Composite types: Pijul stores branches as (roughly) a BTree<String,
BTree<Vertex, Edge>>.

I have a prototype text editor with forkable files, its type is BTree<String,
(Rope, BTree<Vertex, Edge>)>.

Interested in datastructures and performance challenges? Join us!



28/34

Plan

Version control

Our solution

Implementation

Post-git, really?



29/34

Things we get for free

I Superfast pijul credit2: info readily available in the graph
I Have your bugfixes on your main branch.
I Submodules for free: changes on unrelated projects are commutative!
I Signing + identity: your identity is your public key. Patches signed by default,

identity (email/name/…) changes for free.
I Free cherry-picking: just apply that patch, no need to change its identity.
I Almost free scalability, no Rube Goldberg machine needed.

2Stop blaming your coauthors!



30/34

Commutative state identifiers

I We want to check repo states equality, even with different orders.
I We want to compute each state identifier in constant time from the previous state

id and a patch.
I We want states to be hard to forge.

Solution: discrete log on elliptic curves!

Turn each patch identity h into an integer, and have the state with patches
h0, h1, . . . , hn be identified by eh0·h1·...·hn .



31/34

Towards a hybrid state/patch system

I In Git/SVN/CVS/Hg, commits are states, not changes, even though patches can
be applied and recomputed.

I Darcs only has changes, and recomputes states as needed.

I Pijul has both: a data structure modelling the current state, but it was found
from the patches and is therefore completely transparent.



32/34

Towards a hybrid state/patch system: ongoing projects

I Lightweight tags to add super fast history browsing, while retaining all the good
properties of patches.

Current tags: Sanakirja, but using a compressed file as a backend rather than the
raw disk.

I Patch groups, i.e. keywords to describe features, allowing patches on the same
branch to be handled (pushed) independently, even when interspersed with others.

I Cues to avoid half-merged states when merging a series of patches.



33/34

Help us!

I This is currently a large project with a small team, but proper maths can make
that work.

I Bootstrapped (used for itself) since 2017.
I Documentation, accessibility, UI, bikeshedding…
I “Good first bugs” tags on nest.pijul.com/pijul/pijul to get acquainted with our

codebase.
I https://pijul.zulipchat.com

https://pijul.zulipchat.com


34/34

Conclusion

I Open Source version control based on algorithms and theorems.

I Scalable to monorepos and large files.

I Potentially usable by non-coders: parliaments, artists, lawyers,
Sonic Pi composers, LEGO builders…

I Repo hosting service available: nest.pijul.com

Acknowledgements: Florent Becker, Tankf33der, Rohan Hart, Chris Bailey, Angus Finch…


	Version control
	Our solution
	Implementation
	Post-git, really?
	Conclusion

