
Property based
testing in Elixir

Let’s start with a disclaimer

Property based
testing in Elixir

Tonći Galić / @Tuxified
@tuxified@mastodon.social

A little intro

- Tonći Galić / @Tuxified
- Live in 󰐗 (near Amsterdam)
- Family 🐶 🐱🐱󰴞󰴞󰴞
- Like (computer) languages 🤓
- Like doing sports (󰝄, 󰣇 ..)

Sometimes feel 󰬖

Makes you think harder,
not more

All kinds of cases, often
edge cases

Combination of features
(hence tests) possible

Once an issue is found,
search for minimal input

TL;DL:

Rewires 🧠Complexity

Generate Shrinking

Why

Examples

Intro01 This talk 02 Into property based testing
(PBT)

03 To get a feeling what it’s
useful for

Table of contents

Conclusion04 When should/shouldn’t
you resort to PBT

01
Unit testing

A.k.a example testing

Good Boring Hard

Why talk about Unit testing?

Testing is good as it
gives us confidence,

prevents disasters and
helps drive design

Coming up with good
examples for our tests is

boring and tedious

How many tests should
we write? How will our
test suite grow as we

add features

Write tests for the plus operator (Kernel.+/2)

Write tests for the plus operator (Kernel.+/2)

Testing
can be
boring

How many tests?
N features O(n) tests No problem

How many tests?
N features O(n) tests No problem

Pairs of N features O(n²) This is a step up, but doable

How many tests?
N features O(n) tests No problem

Pairs of N features O(n²) This is a step up, but doable

Triples of N
features O(n³) Starting to get out of hand

How many tests?
N features O(n) tests No problem

Pairs of N features O(n²) This is a step up, but doable

Triples of N
features O(n³) Starting to get out of hand

M x N features 💥 🤯

Testing
can be

hard

How to fix?

02
Property based

testing

— Folks at Quviq

“Instead of writing examples, we
define properties and let the
computer come up with cases”

— Folks at Quviq

“Instead of writing examples, we
define properties and let the
computer come up with cases”
... and some more.

test "String.reverse reverses a string" do
 assert String.reverse("FOSDEM") == "MEDSOF"
 refute String.reverse("FOSDEM") == "FOSDEM"
 assert String.reverse("") == ""
end

Write tests for string reversal

Does this spark confidence?

Write properties for string reversal

Write properties for string reversal

 - first item becomes last item (for non-empty list)
 - last item becomes first item (for non-empty list)
 - palindromes stay the same after reversal
 - amount of items stay consistent
 -

What are other properties of Any.reverse/1 ?

Write properties for string reversal

Run tests

Edge case
found !!

Case
shrinked

03
Examples*

*Use cases

Volvo’s
AUTOSAR

3000 pages
specification

1_000_000
Lines of vendor code tested

200
Issues found

Klarna’s
heisenbug

6 weeks
No result

1 GB
Files

< 3 day
To find issue with QuickCheck

 - symmetrical functions (serialize <-> deserialize)
 - mathematical proof
 - compare systems
 - testing concurrency

What are other good occasions to use PBT

04
Conclusion

Makes you think harder,
not more

All kinds of cases, often
edge cases

Combination of features
(hence tests) possible

Once an issue is found,
search for minimal input

Conclusion

Complexity

Generate Shrinking

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, and infographics & images by Freepik

Does anyone have any questions?
Tonći Galić / @Tuxified

@tuxified@mastodon.social

Thanks!

Please keep this slide for attribution

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

Additional resources
BEAM: PropEr, QuickCheck, StreamData,
Triq, etc etc

Haskell: QuickCheck (by Quviq)

Python: https://hypothesis.works/

Book: https://propertesting.com/

Talk: John Hughes - Keynote: How to specify
it!
https://www.youtube.com/watch?v=G0NU
Ost-53U

https://hypothesis.works/
https://propertesting.com/

