
1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Support Dynamically
Linked Executables via

Linux ld.so and
Implement ENA Driver

Expand Application of OSv

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Agenda

● Support statically linked executables and

dynamically linked executables via Linux ld.so

● ENA driver and AWS Nitro

● XConfig preview

● Upcoming 1.0 release and beyond

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

OSv built-in dynamic linker and libc

● Most applications do NOT make system calls into Linux kernel directly
● Instead, they call libc functions that delegate to SYSCALL or SVC

instruction
● The OSv built-into-kernel dynamic linker memory-maps ELF files and

resolves the undefined symbols by pointing them to OSv implementations
● Supported types

○ Shared Libraries and Dynamically Linked Executables
○ PIEs and non-PIC

● Benefit
○ Fast local function calls without SYSCALL/SVC overhead

● Drawback
○ Linux compatibility is a moving target

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

OSv built-in dynamic linker and libc

…

JMP @puts

…

…

Program
PLT

Dynamic Linker

Libc

puts

OSv Kernel

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Statically linked executable

● Statically linked executables make direct system calls to Linux kernel
● OSv initially implemented ~70 syscalls to support Golang executables
● ~60 new syscalls implemented including the key ones like brk() and

clone() in order to support statically linked executables
● Most challenging part was to support application thread-local storage

(TLS)
● Expose vDSO as part of the kernel image
● Benefit

○ Better Linux compatibility
● Drawback

● Overhead of system calls

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

PT_LOAD segment 1

PT_LOAD segment 2

PT_LOAD segment 3

Statically linked executable

MOVQ RAX, $1

SYSCALL

Dynamic Linker

SYSCALL handler

write()

OSv Kernel
mmap

call puts

Program
ELF

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Linux dynamic linker and glibc

● Run dynamically linked programs using the Linux dynamic linker (LD)
instead of the OSv built-in one
○ scripts/run.py -e '/lib64/ld-linux-x86-64.so.2 /hello'

● Needs to add ld-linux-x86-64.so.2 or ld-linux-aarch64.so.1 and other
libc library files to the image

● Benefits
○ Better Linux compatibility
○ Ability to take advantage of glibc optimizations

● Drawbacks
● Overhead of system calls
● Inability to use the OSv libc optimizations

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Linux dynamic linker and glibc

MOVQ RAX, $1

SYSCALL

libc.so.6

Dynamic Linker

SYSCALL handler

mmap()
write()

OSv KernelLinux Dynamic
Linker (ld.so)

Program ELF

mmap

load in memory

call puts

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Strace

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

ENA Driver

Implement the AWS ena driver by porting the FreeBSD version

● Adapt the FreeBSD code to make it work in OSv
● Minimize changes so that we can backport any potential bug fixes or

enhancements in the future
● Reduce the code footprint by eliminating features that are either not

relevant to OSv or not needed at this point (like ioctl(), sysctl(), etc)

- Resulting driver "costs" ~7k lines of mostly C code and ~56K larger kernel size

- Can only be tested on AWS Nitro EC2 instance

- Seems to be stable and yield decent performance based on the tests involving

 iperf3, netperf, and simple httpserver app

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

AWS Nitro

● ENA driver is enough to run OSv image with ramfs on Nitro EC2

instances

● New script deploy_to_aws.sh to streamline the process of uploading

OSv image as a snapshot, creating AMI and finally instantiating

EC2 instance

● NVMe driver is WIP

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

XConfig - WIP

● Continuation of the modularization / driver profiles effort

● Xconfig files

● Add #ifdef in relevant places

● Makefile acts on .config

○ Include/exclude relevant object files

○ Pass configuration options to relevant source files

● Let garbage collection remove remaining stuff

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

XConfig - menu example

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

788K loader.elf uses 1.2M of memory

● Optimize kernel size to 788L to run on Firecracker with < 2MB of memory
● Reduce kernel size by:

○ Hiding most symbols
○ Excluding all drivers but virtio/mmio
○ Excluding tracepoints, dhcp and networking stack code
○ Excluding std::locale
○ Eventually enable LTO (Link Time Optimization)

● Lower memory usage by:
○ Reducing RCU defer queue
○ Reducing L1/L2 memory pool size
○ Disabling procfs and sysfs
○ Reducing kernel thread stack size to 16K

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

788K loader.elf uses 1.2M of memory

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Upcoming 1.0 release

● Planned for 1st quarter of 2024

● Remaining work:

○ Finish KConfig work

○ Add support of Ext2/3/4 filesystem

○ Merge IPV6 branch

○ Potentially implement NVMe driver

■ There are 2 PRs as candidates

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Beyond 1.0
● Capstan 2

○ Remove obsolete features and add new desired functionality
○ Support building images out of binaries or packages, running those

locally, and provisioning to the cloud

● Peformance and Security
○ Optimize futex
○ Add some spinning to lock-less mutex_lock
○ Optimize atomic operations on single CPU
○ Implement ALSR and make kernel relocatable

● Support AWS Graviton
○ Implement UEFI boot
○ Implement MSI/X and ACPICA on AArch64

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Thanks

● Organizers
● ScyllaDB

○ Dor Laor
○ Nadav Har’El

● Other OSv contributors
● Please join us

1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

OSv Resources and Q&A

❏ Original OSv paper -
https://www.usenix.org/system/files/conference/atc14/atc14-paper-kivity.pdf

❏ P99 presentation -
https://www.p99conf.io/session/osv-unikernel-optimizing-guest-os-to-run-state
less-and-serverless-apps-in-the-cloud/

❏ FOSDEM 23 - https://archive.fosdem.org/2023/schedule/event/osvevolution/

❏ Wiki pages:
❏ Components of OSv - https://github.com/cloudius-systems/osv/wiki/Components-of-OSv
❏ Memory Management - https://github.com/cloudius-systems/osv/wiki/Memory-Management
❏ Networking Stack - https://github.com/cloudius-systems/osv/wiki/Networking-Stack
❏ Modularization - https://github.com/cloudius-systems/osv/wiki/Modularization
❏ Filesystems - https://github.com/cloudius-systems/osv/wiki/Filesystems

https://www.usenix.org/system/files/conference/atc14/atc14-paper-kivity.pdf
https://www.p99conf.io/session/osv-unikernel-optimizing-guest-os-to-run-stateless-and-serverless-apps-in-the-cloud/
https://www.p99conf.io/session/osv-unikernel-optimizing-guest-os-to-run-stateless-and-serverless-apps-in-the-cloud/
https://github.com/cloudius-systems/osv/wiki/Components-of-OSv
https://github.com/cloudius-systems/osv/wiki/Memory-Management
https://github.com/cloudius-systems/osv/wiki/Networking-Stack
https://github.com/cloudius-systems/osv/wiki/Modularization
https://github.com/cloudius-systems/osv/wiki/Filesystems

