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Introduction: isolated spans
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Introduction: distributed traces
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How is context propagated between services?

● Each new request gets unique 16 hex character SpanID

● W3C defines a request header field called “traceparent”

5fe865607da112abd799ea8108c38bcd 00 4c59e9a913c480a3 01

TraceID Parent SpanID FlagsVendor
Info

● The TraceID is common for all spans of one trace

● This traceparent value is propagated through outgoing header calls



How to propagate context (pseudocode)
service frontend(request, response) {
  traceparent = request.header[“traceparent”]
  span.start(traceparent)

  /* do stuff */

  backend.call(headers = {
     “traceparent”: traceparent
  })

  /* do stuff */

  response.ok().render()
  span.end()
}

Can be injected by your
instrumentation
SDK or agent
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Metrics & Traces

Your
Application

Runtime & libs Grafana 
BeylaeB

PF



eBPF

● JIT Virtual Machine at the Linux Kernel

● Can hook your probe programs to multiple events 

of the Kernel, libraries and user-space programs

● Lets you see (and even modify) the runtime 

memory



Providing spans information with Beyla

● Language-level (Go)
○ Hook uprobe at the start and end of any ServeHttp(Request, 

Response) function

● Kernel-level (other languages)
○ Hook kprobes and kretprobes at several kernel functions and 

libraries (sys_accept, tcp_recvmsg, tcp_sendmsg, etc…)



  traceparent = request.header[“traceparent”]
  span.start(traceparent)

Automatic context propagation with Beyla
service frontend(request, response) {

  /* do stuff */

  backend.call(headers = {

     “content-type”: ...

     ...

  })

  /* do stuff */

  response.ok().render()

}

Read memory with eBPF

Write user space 
memory from eBPF

● Deal with 
runtime-managed 
memory

● Deal with limited-size 
preallocated buffers

● Deal with operating 
system protections

span.end()

“traceparent”: traceparent

Propagate context



Propagating context: writing propagation in memory

● For Go

● Tracks goroutine child parent relationships for async 

calls

● Writes traceparent into outgoing request headers



Black-box context propagation

Client Server
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Unique client/server connection info
Source ip: 10.0.0.5, source port: 35578
Destination ip: 10.0.0.6, destination port: 80

eBPF map 
storage

We can use this connection 
info to correlate the server 
to client request



Black-box context propagation
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Demo time!
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Summary

● By using eBPF we can capture distributed traces with some limitations

● Using eBPF requires almost no effort from the developer/operator

● Combining eBPF kernel packet tracing with language level support can get us to 

fully automatic distributed traces

Thank you!

Connect with us at
https://github.com/grafana/beyla

https://github.com/grafana/beyla

