{9 Grafanalabs

Implementing distributed traces with
eBPF

Monitoring & Observability devroom

Nikola Grcevski

Mario Macias Lloret
FOSDEM 2024
Brussels, Belgium

Contents

e Quick introduction to what is distributed tracing

e How is distributed tracing done with OpenTelemetry
e Distributed traces with Beyla (eBPF)

e DEMO

Introduction: isolated spans

Client Server

request

>~ ‘Q

S emmmmm=—— T > Telemetry

eeeeeeeee

response SDK

et T Span: Collector

e Start

End
Client ID
Path
Response

Introduction: isolated spans

Client Frontend Backend Database
T I T I
1 1 1 1
request | | |
> request . Y
> |
request |
>_
response
= = = = = — ——— —— - -
request :
>_
response = = = = = = = ——— - -
€ = — = —— o response T
response I .
Khooooooooooc e 1 1
1 1 1
1 | 1
1 | 1
1 1 1

Introduction: isolated spans

Not Your APM Dashboard
the most
useful

Backend span Backend span

Frontend span Backend span

Introduction: distributed traces

We want to see KNANSVINSNNRI

the context
Frontend span
Backend span

Frontend span

Backend span

Frontend span
Backend span

How is context propagated between services?

e [Each new request gets unique 16 hex character SpanID

e W3C defines a request header field called “traceparent”

00 | 5fe865607dal112abd799ea8108c38bcd | 4c59e9a913c480a3 | 01
1§ J U J
Vendor TracelD Parent'SpaniD Flags
Info

e The TracelD is common for all spans of one trace

e This traceparent value is propagated through outgoing header calls

How to propagate context (pseudocode)

service frontend(request, response) {

traceparent = request.header[“traceparent”]
span.start(traceparent)

/* do stuff */

backend.call(headers = { . Can be injected by your
“traceparent": traceparent }. |nStrumentat|on

2 . SDK or agent

/* do stuff */

response.ok().render()

span.end() }

Beyla native eBPF auto-instrumentation

Your
Application

Metrics & Traces

orafana
(ol
® Beyla OpenTelemetry

Linux OS

eBPF

e JIT Virtual Machine at the Linux Kernel

e Can hook your probe programs to multiple events
of the Kernel, libraries and user-space programs

e lets you see (and even modify) the runtime

memory

Providing spans information with Beyla

e Language-level (Go)
o Hook uprobe at the start and end of any ServeHttp(Request,

Response) function
e Kernel-level (other languages)

o Hook kprobes and kretprobes at several kernel functions and

libraries (sys_accept, tcp_recvmsg, tcp_sendmsg, etc...)

Automatic context propagation with Beyla

service frontend(request, response) {{ Read memory with eBPF

. traceparent = request.header[“traceparent”]
/* do stuff */

. span.start(traceparent)
0 Propagate context

backend.call(headers = {{. Write user space
“content-type”: ... : memory from eBPF

“traceparent”: tracepare

1)

/* do stuff */ e Deal with

runtime-managed
: memory
.. . span.end() e Deal with limited-size
} preallocated buffers
e Deal with operating
system protections

response.ok().render()

Propagating context: writing propagation in memory

e For Go

e Tracks goroutine child parent relationships for async

calls

e \Writes traceparent into outgoing request headers

Black-box context propagation

Client

eBPF map
storage

Unique client/server connection info
Source ip: 10.0.0.5, source port: 35578
Destination ip: 10.0.0.6, destination port: 80

We can use this connection
info to correlate the server
to client request

Black-box context propagation

; v
Client Server ------ ;
| | | eBPF map
1
——————— >
Read or generate iR 1 storage
traceparent \ I
request «------ 4---
Beyla stores ™~ 9 >
this in the N
shared eBPF ! :) i i
map for the L e cccconono Unique client/server connection info
. Source ip: 10.0.0.5, source port: 35578
connection - :) - :
info Destination ip: 10.0.0.6, destination port: 80
response Lookup
- ———— - — — == L traceparent for
connection info
Beyla consults

the shared
eBPF map

@ Grafana Labs github.com/grafana/docker
-otel-Igtm

IIIIE%%EIIIII
|EiHHHgHHI IHHHHHHHI
Worker

Worker

Worker

Summary

e By using eBPF we can capture distributed traces with some limitations
e Using eBPF requires almost no effort from the developer/operator
e Combining eBPF kernel packet tracing with language level support can get us to

fully automatic distributed traces

Thank youl!

Connect with us at
https://aithub.com/grafana/beyla

https://github.com/grafana/beyla

