
Implementing distributed traces with
eBPF
Monitoring & Observability devroom

Nikola Grcevski
Mario Macías Lloret
FOSDEM 2024
Brussels, Belgium

Contents

● Quick introduction to what is distributed tracing

● How is distributed tracing done with OpenTelemetry

● Distributed traces with Beyla (eBPF)

● DEMO

Introduction: isolated spans

Client Server

request

response
CollectorSDK

Span:
● Start
● End
● Client ID
● Path
● Response

Introduction: isolated spans

Client Frontend

request

response

Backend

request

response

Database

request

response

request

response

Introduction: isolated spans

Not

the most

useful

Your APM Dashboard

Frontend span

Frontend span

Frontend span

Backend span Backend span

Backend span

DB span DB span

DB span

DB span

DB span DB span

Introduction: distributed traces

We want to see

the context
Your APM Dashboard

Frontend span
Backend span

DB span DB span

Frontend span
Backend span
DB span

Frontend span
Backend span

DB spanDB span

How is context propagated between services?

● Each new request gets unique 16 hex character SpanID

● W3C defines a request header field called “traceparent”

5fe865607da112abd799ea8108c38bcd 00 4c59e9a913c480a3 01

TraceID Parent SpanID FlagsVendor
Info

● The TraceID is common for all spans of one trace

● This traceparent value is propagated through outgoing header calls

How to propagate context (pseudocode)
service frontend(request, response) {
 traceparent = request.header[“traceparent”]
 span.start(traceparent)

 /* do stuff */

 backend.call(headers = {
 “traceparent”: traceparent
 })

 /* do stuff */

 response.ok().render()
 span.end()
}

Can be injected by your
instrumentation
SDK or agent

Linux OS

Beyla native eBPF auto-instrumentation

Metrics & Traces

Your
Application

Runtime & libs Grafana
BeylaeB

PF

eBPF

● JIT Virtual Machine at the Linux Kernel

● Can hook your probe programs to multiple events

of the Kernel, libraries and user-space programs

● Lets you see (and even modify) the runtime

memory

Providing spans information with Beyla

● Language-level (Go)
○ Hook uprobe at the start and end of any ServeHttp(Request,

Response) function

● Kernel-level (other languages)
○ Hook kprobes and kretprobes at several kernel functions and

libraries (sys_accept, tcp_recvmsg, tcp_sendmsg, etc…)

 traceparent = request.header[“traceparent”]
 span.start(traceparent)

Automatic context propagation with Beyla
service frontend(request, response) {

 /* do stuff */

 backend.call(headers = {

 “content-type”: ...

 ...

 })

 /* do stuff */

 response.ok().render()

}

Read memory with eBPF

Write user space
memory from eBPF

● Deal with
runtime-managed
memory

● Deal with limited-size
preallocated buffers

● Deal with operating
system protections

span.end()

“traceparent”: traceparent

Propagate context

Propagating context: writing propagation in memory

● For Go

● Tracks goroutine child parent relationships for async

calls

● Writes traceparent into outgoing request headers

Black-box context propagation

Client Server

request

response

Grafana
Beyla

Unique client/server connection info
Source ip: 10.0.0.5, source port: 35578
Destination ip: 10.0.0.6, destination port: 80

eBPF map
storage

We can use this connection
info to correlate the server
to client request

Black-box context propagation

Client Server

request

response

Grafana
Beyla

Unique client/server connection info
Source ip: 10.0.0.5, source port: 35578
Destination ip: 10.0.0.6, destination port: 80

eBPF map
storageRead or generate

traceparent

Beyla stores
this in the
shared eBPF
map for the
connection
info

Lookup
traceparent for
connection info
Beyla consults
the shared
eBPF map

Demo time!

Frontend Backend

Worker

Worker

Worker

HTTP HTTP
gRPC

github.com/grafana/docker
-otel-lgtm

Beyla

Summary

● By using eBPF we can capture distributed traces with some limitations

● Using eBPF requires almost no effort from the developer/operator

● Combining eBPF kernel packet tracing with language level support can get us to

fully automatic distributed traces

Thank you!

Connect with us at
https://github.com/grafana/beyla

https://github.com/grafana/beyla

