
FFVVC: the VVC
decoder in FFmpeg

Nuo Mi <nuomi2021@gmail.com>
Frank Plowman <post@frankplowman.com>

Shaun Loo <shaunloo10@gmail.com>

mailto:post@frankplowman.com

— Introduction to FFVVC
— VVC
— FFVVC

— What’s new?
— New coding tools
— Thread model

— Performance
— Versus other codecs
— Versus VVC decoders

— GSoC
— Next steps

Agenda

Disclaimer Frank Plowman
frankplowman.com

— Introduction to FFVVC
— VVC
— FFVVC

— What’s new?
— Performance
— GSoC
— Next steps

New standard from the JVET. Successor of H.264/AVC and
H.265/HEVC.

Two objectives:

— 50% lower bitrates than HEVC
— Versatility:

— Screen content coding
— Adaptive resolution change
— Independent subpictures

H.265/VVC (Versatile Video Coding)

Open Source VVC

Encoders

— VTM
— VVenC
— uvg266

Decoders

— VTM
— VVdeC
— OpenVVC
— FFVVC

C merged at start of the year.

Inter prediction ASM merged.

Some other ASM in review.

Not yet Main-10 complete.

State of FFVVC

Module C Decode Time Reuse from HEVC Complete Priority

Intra 2.5% maybe 0% Low

Inter 18.5% 50% 50% High

Transform 0.75% 10% 0% High

LMCS 4% 0% 0% Medium

Deblock 3.75% 50% 0% High

SAO 2.5% 100% 100% Medium

ALF 65% 0% 70% High

We need your help

ASM Status (x86 only)

Decoder C (kLOC) ASM (kLOC)

OpenVVC 47 167

VVdeC 49 12

FFVVC 18 —

Decoder size

We can reuse code or binary with others:

HEVC

VVC

Infrastructure

HW decoder

CBS

NAL/CABAC Reader Inter, SAO, Deblock, ASM
PS Parser

Reference Management

Why FFVVC only needs 1/3 the code

— Introduction to FFVVC
— What’s new?

— New coding tools
— Thread model

— Performance
— GSoC
— Next steps

FFVVC has implemented a vast number of tools added to VVC
● Intra Prediction

○ Directional intra prediction modes
○ Cross-component linear model prediction
○ Position dependent intra prediction combination
○ Multiple reference line intra prediction
○ Intra Sub-Partitions
○ Matrix weighted Intra Prediction

● Inter Prediction
○ Extended motion vector prediction
○ Symmetric motion vector difference coding
○ Extended merge mode
○ Merge with motion vector difference
○ History-based Motion Vector Prediction
○ Affine motion compensated prediction
○ Subblock-based temporal motion vector prediction
○ Adaptive motion vector resolution
○ Motion field storage
○ Bi-prediction with CU-level weights
○ Bi-directional optical flow
○ Decoder side motion vector refinement
○ Geometric partitioning
○ Combined inter and intra prediction

● Transforms and Residual Coding
○ Integer Transforms and Quantization
○ Multiple transform selection
○ Subblock transforms for Inter CUs
○ Low frequency non-separable transform
○ Dependent quantization
○ Joint coding of chroma residuals

● Loop Filtering
○ Luma mapping with chroma scaling
○ Adaptive Loop Filter

● Versatile Coding Tools
○ Screen Content Tools (Todo)
○ 360◦ Tools (Todo)
○ Layered Coding (Todo)

New coding tools

— FFHEVC has two thread models:
frame and slice
— They can not work together
— No thread can cross frame or slice

boundaries
— FFVVC has a more fine-grained

thread model
— Better able to utilise higher core counts
— C code is able to decode 4k at over

30FPS using an i7-12700k

A 4k video decoding on 16 cores

Stage-based thread model

CTU divided into 8 stages:
— Parser (P)
— Inter (I)
— Recon (R)
— LMCS (L)
— Deblock V (V)
— Deblock H (H)
— SAO (S)
— ALF (A)

Each stage only depends on the current or previous stage
of the neighboring CTUs.

Informative, not correct

Stage-based thread model

Facilitated by new AVExecutor utility

Tasks are put in a queue and scheduled to a thread

Simple algorithm, only 201 LOC and 1 real function

Made available in libavutil

Stage-based thread model

— Introduction to FFVVC
— What’s new?
— Performance

— Versus other codecs
— Versus VVC decoders

— GSoC
— Next steps

FFVVC vs. FFHEVC vs. FFAVC. vs dav1d

Netflix Sparks (natural content,
4096×2160, 10-bit, 4:2:0)

Encoded at 4MiB/s using VVenC,
aom-av1, x264 and x265

Decoded on an i7-8700K (AVX2,
3.70GHz)

FFVVC vs. FFHEVC vs. FFAVC. vs dav1d

i7-8700K (6 cores, 12 threads)

VVC Decoders 1080p Performance (C only)

VVdeC is ~10% faster on Linux and ~10% slower on Windows.
Difference is in their single-threaded performance, their speedups are similar.

VVC Decoders 4K Performance (C only)

Story is similar yet slightly more pronounced for 4K.

1080P and 4k performance (ASM code)

VVdeC ASM is

90% faster
single-threaded

75% faster
multi-threaded.

— Introduction to FFVVC
— What’s new?
— Performance
— GSoC
— Next steps

Frank Plowman

Implemented support for 12,14 bit-depths and range extension.
In-progress AVX-2 optimisations for inverse transforms

Shaun Loo

Implemented AVX-2 SAO, Deblock Chroma filters. Improvements for
Deblock Chroma, Deblock Luma in-progress.

Google Summer of Code 2023

— ASM
— x86

— Upstream existing code
(ALF, SAO)

— Implement more
functions
— Deblock
— Transform
— LMCS

— ARM (GSoC 2024)

Next steps

— New features
— IBC, Palette and RPR
— Thread optimization for 32+

cores
— GPU based decoder ?

FFmpeg now has its own VVC decoder.

It uses a codec parallelism technique new to FFmpeg.

C and multithreading performance is on par with VVdeC.

Optimised assembly is in the works.

Patches welcome!

Conclusion

