
Verilog-AMS in Gnucap

Al Davis, Felix Salfelder

FOSDEM ’24

Content

▸ Gnucap, what is it?

▸ Some history and what’s coming

▸ Architecture and Plugins

▸ Verilog-AMS, what is it?

▸ Modelgen and state of the art

▸ Some features in detail

▸ Roadmap

Gnucap, what is it

▸ Run on hardware too small to run Spice!
(originally)

▸ Beyond Spice – fast, mixed signal

▸ Updated architecture – C++, plugins

▸ Model compiler, modelgen

▸ 1990. ACS, Al’s Circuit Simulator

▸ 1992. GPL’d

▸ 2001. Renamed to Gnucap, a GNU project

▸ 2008-2010. Move to Plugins

Gnucap, what is it

▸ Run on hardware too small to run Spice!
(originally)

▸ Beyond Spice – fast, mixed signal

▸ Updated architecture – C++, plugins

▸ Model compiler, modelgen

▸ 1990. ACS, Al’s Circuit Simulator

▸ 1992. GPL’d

▸ 2001. Renamed to Gnucap, a GNU project

▸ 2008-2010. Move to Plugins

Beyond Spice

▸ Mixed signal – implicit mixed mode

▸ ”fast-spice”

▸ Large circuits

▸ Time step control

Mixed-mode

▸ ”Implicit” mixed mode

▸ Introduced concept of a ”connectmodule”
(without the name)

▸ Digital techniques for analog.

Mixed-mode

▸ ”Implicit” mixed mode

▸ Introduced concept of a ”connectmodule”
(without the name)

▸ Digital techniques for analog.

Digital techniques for analog

▸ Event queue – activity driven

▸ Partial solutions

▸ Low rank partial matrix solver

▸ incremental update

▸ Queues – load, eval, accept

▸ Full SPICE accuracy

Time step control

▸ cross events – separate smoothness and moving events

▸ real events – once it is scheduled, it’s known

▸ Getting started

Software architecture

▸ C++

▸ Plugins

▸ Library

Program = main + library + plugins

Library

▸ Matrix solver

▸ Database

▸ I/O

▸ Expression evaluator

Plugins – why?

▸ Collaboration, modularity enforced

▸ Quality

▸ Dependencies

▸ Anyone can make or modify a plugin

Plugins – how?

▸ C++ derived classes

▸ Dynamically loaded (dlopen) extensions

▸ ”Dispatcher”

▸ Wrappers

Plugins – what

▸ Devices
▸ primitives, modelgen, SPICE, Qucsator..

▸ Commands, algorithms
▸ ac, dc, tran, fourier, pz, sparam, postprocessing..

▸ Source languages
▸ Verilog, SPICE, Spectre, gEDA, Qucsator

▸ Measurements
▸ cross, peak, integrate, rms..

Plugins – wrappers

▸ Interface to foreign code

▸ Spice(s) – 3e3, 3f5, Jspice, Ngspice

▸ Qucs (incomplete)

▸ System-C (possible)

▸ Python

Model compiler

▸ Generates C++ from model description

▸ .. to build a device plugin

▸ modelgen: predates *AMS

▸ Could generate code for other simulators

▸ Now: updating to Verilog-AMS

Verilog-AMS: Analog Mixed Signal

▸ Modelling Language
▸ Based on Verilog, IEEE Std 1364-2005
▸ Standard in semiconductor industry
▸ Conservative and signal-flow disciplines
▸ Authored by former SPICE devs

▸ Features
▸ Enables hierarchical modelling
▸ Addresses computational efficiency
▸ True mixed signal
▸ ”system-level analog”

Verilog-AMS: Analog Mixed Signal

▸ Modelling Language
▸ Based on Verilog, IEEE Std 1364-2005
▸ Standard in semiconductor industry
▸ Conservative and signal-flow disciplines
▸ Authored by former SPICE devs

▸ Features
▸ Enables hierarchical modelling
▸ Addresses computational efficiency
▸ True mixed signal
▸ ”system-level analog”

Verilog-AMS current implementations

▸ commercial, costly, closed
▸ Analog-Subset, ”Verilog-A”

▸ ADMS (around 2000): generate SPICE models
▸ OpenVAF (from 2020), ”OSDI”, simplified SPICE
▸ 2023-24: modelgen-verilog overtaking (taking over?)
▸ Enables analog compact modelling

▸ Beyond Verilog-A
▸ from 2000 Gnucap: preparing for post-spice...
▸ 2014 Verilog-AMS LRM v2.4
▸ 2024: modelgen-verilog, mixed modelling (Funding secured)
▸ Will enable system-level analog modelling

Going further

Beyond ADMS/openVAF, we have

▸ hierarchy

▸ (compiled) paramset

▸ binning

▸ compliant sources

▸ tolerances

▸ time step control

▸ extensibility

Design decisions in Modelgen-Verilog

▸ Retain proven code bases

▸ Stick to the architecture

▸ Make it work, then make it fast.

▸ Unconstrained by SPICE and/or OSDI

▸ Focus on new paradigms
▸ Examples today

▸ (compiled) paramset
▸ hierarchy
▸ extensibility

Paramset 1: module overloading

paramset new_component existing_component

parameter type value = default [range];

[..]

.protoparm(value_expression);

[..]

endparamset

▸ paramset replaces SPICE .MODEL

▸ Build new component from existing component

▸ User defined parameters with ranges

▸ Model selection and binning

▸ code re-use

Paramset 1: module overloading

paramset new_component existing_component

parameter type value = default [range];

[..]

.protoparm(value_expression);

[..]

endparamset

▸ paramset replaces SPICE .MODEL

▸ Build new component from existing component

▸ User defined parameters with ranges

▸ Model selection and binning

▸ code re-use

Paramset 1: module overloading

paramset new_component existing_component

parameter type value = default [range];

[..]

.protoparm(value_expression);

[..]

endparamset

▸ paramset replaces SPICE .MODEL

▸ Build new component from existing component

▸ User defined parameters with ranges

▸ Model selection and binning

▸ code re-use

Paramset 2: pruning

Get rid of constants and structures before compilation

module capacitor(p,n);

inout p,n;

electrical p,n;

parameter real c = 1. from [0:inf);

parameter real ic = 0;

analog begin

if($param given(ic) && analysis("ic"))

V(p,n) <+ ic; // extra stuff, not normally needed

else

I(p,n) <+ ddt(c * V(p,n));

end

endmodule

Paramset 2: pruning

Get rid of constants and structures before compilation

module capacitor (p,n);

[..]

parameter real c = 1. from [0:inf);

parameter real ic = 0;

analog begin

if($param given(ic) && analysis("ic"))

V(p,n) <+ ic; // extra stuff, not normally needed

else

I(p,n) <+ ddt(c * V(p,n));

end

endmodule

paramset capacitor capacitor_

parameter real c = 1. from [0:inf);

.c(c); // not setting ic, getting rid of it

endmodule

Paramset 3: pruning

Imagine...

▸ A million instances of some device

▸ with 10.000 lines of model code each.

▸ Computing the same constant value,

▸ in every iteration of your simulation.

▸ (Most of it sits there unused, anyway.)

▸ Now compile/load pruned models,

▸ get the same results (by design).

Corollary: ”compilation time” is a red herring. Pruned models are
small!

Paramset 3: pruning

Imagine...

▸ A million instances of some device

▸ with 10.000 lines of model code each.

▸ Computing the same constant value,

▸ in every iteration of your simulation.

▸ (Most of it sits there unused, anyway.)

▸ Now compile/load pruned models,

▸ get the same results (by design).

Corollary: ”compilation time” is a red herring. Pruned models are
small!

Paramset 3: pruning

Imagine...

▸ A million instances of some device

▸ with 10.000 lines of model code each.

▸ Computing the same constant value,

▸ in every iteration of your simulation.

▸ (Most of it sits there unused, anyway.)

▸ Now compile/load pruned models,

▸ get the same results (by design).

Corollary: ”compilation time” is a red herring. Pruned models are
small!

Paramset 3: pruning

Imagine...

▸ A million instances of some device

▸ with 10.000 lines of model code each.

▸ Computing the same constant value,

▸ in every iteration of your simulation.

▸ (Most of it sits there unused, anyway.)

▸ Now compile/load pruned models,

▸ get the same results (by design).

Corollary: ”compilation time” is a red herring. Pruned models are
small!

Paramset 3: pruning

Imagine...

▸ A million instances of some device

▸ with 10.000 lines of model code each.

▸ Computing the same constant value,

▸ in every iteration of your simulation.

▸ (Most of it sits there unused, anyway.)

▸ Now compile/load pruned models,

▸ get the same results (by design).

Corollary: ”compilation time” is a red herring. Pruned models are
small!

Paramset 3: pruning

Imagine...

▸ A million instances of some device

▸ with 10.000 lines of model code each.

▸ Computing the same constant value,

▸ in every iteration of your simulation.

▸ (Most of it sits there unused, anyway.)

▸ Now compile/load pruned models,

▸ get the same results (by design).

Corollary: ”compilation time” is a red herring. Pruned models are
small!

Paramset 3: pruning

Imagine...

▸ A million instances of some device

▸ with 10.000 lines of model code each.

▸ Computing the same constant value,

▸ in every iteration of your simulation.

▸ (Most of it sits there unused, anyway.)

▸ Now compile/load pruned models,

▸ get the same results (by design).

Corollary: ”compilation time” is a red herring. Pruned models are
small!

Paramset 3: pruning

Imagine...

▸ A million instances of some device

▸ with 10.000 lines of model code each.

▸ Computing the same constant value,

▸ in every iteration of your simulation.

▸ (Most of it sits there unused, anyway.)

▸ Now compile/load pruned models,

▸ get the same results (by design).

Corollary: ”compilation time” is a red herring. Pruned models are
small!

Paramset 3: pruning

Imagine...

▸ A million instances of some device

▸ with 10.000 lines of model code each.

▸ Computing the same constant value,

▸ in every iteration of your simulation.

▸ (Most of it sits there unused, anyway.)

▸ Now compile/load pruned models,

▸ get the same results (by design).

Corollary: ”compilation time” is a red herring. Pruned models are
small!

Hierarchy 1

Typical ”compact modelling” approach
module rc_lowpass(out, in)

electrical out,in; ground gnd;

analog begin

I(out, gnd) <+ ddt(1e-6* V(out, gnd));

I(out, in) <+ V(out, in) / 1e3;

end

endmodule

But no need to reimplement components.
module rc_lowpass(out, in)

electrical out,in,gnd; ground gnd;

capacitor #(.c(1u)) c(1, gnd);

resistor #(.r(1k)) r(1, 2)

endmodule

Hierarchy 1

Typical ”compact modelling” approach
module rc_lowpass(out, in)

electrical out,in; ground gnd;

analog begin

I(out, gnd) <+ ddt(1e-6* V(out, gnd));

I(out, in) <+ V(out, in) / 1e3;

end

endmodule

But no need to reimplement components.
module rc_lowpass(out, in)

electrical out,in,gnd; ground gnd;

capacitor #(.c(1u)) c(1, gnd);

resistor #(.r(1k)) r(1, 2)

endmodule

Hierarchy 2

Model what you need, not what you can.
module rc_lowpass(out, in)

electrical out, in, gnd; ground gnd;

resistor #(.r(1k)) r(1, 2)

analog begin

I(out, gnd) <+ ddt(1e-6* V(out, gnd));

end

endmodule

Why?

▸ implement models for re-use

▸ re-use models!

▸ memory footprint

▸ compilation time

▸ validate once.

Hierarchy 2

Model what you need, not what you can.
module rc_lowpass(out, in)

electrical out, in, gnd; ground gnd;

resistor #(.r(1k)) r(1, 2)

analog begin

I(out, gnd) <+ ddt(1e-6* V(out, gnd));

end

endmodule

Why?

▸ implement models for re-use

▸ re-use models!

▸ memory footprint

▸ compilation time

▸ validate once.

Hierarchy 2

Model what you need, not what you can.
module rc_lowpass(out, in)

electrical out, in, gnd; ground gnd;

resistor #(.r(1k)) r(1, 2)

analog begin

I(out, gnd) <+ ddt(1e-6* V(out, gnd));

end

endmodule

Why?

▸ implement models for re-use

▸ re-use models!

▸ memory footprint

▸ compilation time

▸ validate once.

Extensibility

”The $ character introduces a language construct which enables
development of user-defined tasks and functions.” (LRM 2.8.3)

▸ Some tasks and functions are plugins.

▸ All of them will be.

▸ cos, sin, exp, ln, ddt, idt, ddx, slew, transition, laplace *, zi *,
$strobe, $monitor, $write, $stop, ...

▸ No boundary between user extensions and built-in stuff.

Extensibility

”The $ character introduces a language construct which enables
development of user-defined tasks and functions.” (LRM 2.8.3)

▸ Some tasks and functions are plugins.

▸ All of them will be.

▸ cos, sin, exp, ln, ddt, idt, ddx, slew, transition, laplace *, zi *,
$strobe, $monitor, $write, $stop, ...

▸ No boundary between user extensions and built-in stuff.

Extensibility

”The $ character introduces a language construct which enables
development of user-defined tasks and functions.” (LRM 2.8.3)

▸ Some tasks and functions are plugins.

▸ All of them will be.

▸ cos, sin, exp, ln, ddt, idt, ddx, slew, transition, laplace *, zi *,
$strobe, $monitor, $write, $stop, ...

▸ No boundary between user extensions and built-in stuff.

Roadmap 2024

▸ Modelgen-Verilog
▸ Essentially complete Verilog-A
▸ Logic modelling
▸ Digital simulation
▸ connect modules

▸ Simulator
▸ Full support for Verilog concepts such as

disciplines, natures, connect semantics
▸ performance enhancements in the solver
▸ vectors, arrays of nodes

▸ Interoperability and standardisation
▸ Verilog as an interchange format

for schematic and layout
▸ Update and extend device wrappers
▸ Target simulators other than Gnucap

Help wanted

▸ Plugins

▸ Wrappers

▸ Data exchange

▸ Test driving

▸ Create wishlist

