Live Streaming End-to-End with Packet Recovery and libRIST Development Roadmap

Streaming live using RIST On Demand to thousands, how you can have your cake and eat it too.

Sergio Ammirata, Ph.D.
What We’ll Discuss

libRIST Development “Roadmap”

- Clarifying misconceptions
- Broadening “Reach”
- Performance Enhancements and Bug Fixes
- Boast: We Think We’ve Achieved the Original “Interoperability” Goal!

Live Streaming End-to-End with Packet Recovery

- What We Mean by *End-to-End*
- For *Really* Large Audiences
- Highly Secure, Authorization, Easy Management, Custom Client
- Packet Recovery *with* Low Latency
libRIST Development Roadmap
2020-2023
Goals for 2024
libRIST Development “RIST Protocol Specs”

RIST Milestones

- RIST Activity Group formed by Video Services Forum April 2017
- VSF TR-06-1 RIST Simple Profile published October 2018
- Advanced Profile Development Completed September 2021
- Successful multi-vendor interop demonstration September 2018
- VSF TR-06-2 RIST Main Profile published March 2020
libRIST Development “RIST Protocol Specs”

- **Simple Profile:**
 - TR-06-1: First Release (Sep 2018)
 - TR-06-1:2020 RTT Echo message (Jun 2020)

- **Main Profile**
 - TR-06-2:2022 EtherType and EAP-SHA256-SRP6a (Aug 2022)
 - TR-06-2:2023 Errata to 2022 version (Aug 2023)

- **Advanced Profile**
 - TR-06-3: First Release (Oct 2021)
 - TR-06-3:2022 EAP-SHA256-SRP6a (Sep 2022)
The TR-06-4 series of recommendations define ancillary features for the RIST protocol that are applicable to multiple profiles.

- TR-06-4 Part1: Source Adaptation (Nov 2022)
- TR-06-4 Part2: RIST over Wireguard VPN (Jan 2023)
- TR-06-4 Part3: Relay (Jun 2023)
- TR-06-4 Part4: Decoder Synchronization (Jan 2024)
- TR-06-4 Part5: Multicast Discovery (Oct 2023)

Other recommendations are still in the works...
We assume, for this talk, you are familiar with RIST

Clarifying Misconceptions

- It is NOT limited to MPEGTS video streams, advanced profile includes support for any payload with clearly identifiable payload types, even raw binary payloads.

- It is NOT only for delayed streams that can afford high latency. It includes support for real time unprotected data channels and very low latency recovery channels.

- It is NOT for transmissions in only one direction. It allows bi-directional communication with and without packet recovery.
libRIST Development “Roadmap 2020-2023”

RIST Specification Improvements That Extend Reach

- Highly Secure Authorization for Mass Audience Live Streaming
- New “use scenarios” such as a one-way satellite-friendly “intrusive” protocol

Distribution

- Liberal licensing for linkage in your own projects, BSD2
- Compile options in popular encoder, decoder platforms

Timely performance enhancements and bug fixes
Roadmap 2020-2023: RIST Specification

EAP SRP 6a Authentication

- Introduced 2022
- Free and more secure than most commercial DRMs, supports large audiences
- We’ll Focus on this in part 2 of this presentation

One-Way Network/Satellite

- “Intrusive” method adds error correction for one-way networking and/or highly asymmetrical networks
Roadmap 2020-2023: Distribution

Distribution

- Now available in OpenBSD and Debian among other distros and also integrated as compile options for ffmpeg, vlc, OBS and many others.
- Liberal BSD2 licensing provisions encourage incorporation into other software and hardware lines, such as my own “day job”
Roadmap 2020-2023: Performance Enhancements

- Automatic configuration and adjustment to network conditions
- Logging and metrics for improved control/fine tuning
- Latest minor version was released this past Halloween
Roadmap: Goals for 2024

- Add support for DTLS encryption and authentication
- Add support for the new Advanced Profile Specification
- Backport support into VLC 3.0 (patches in review)
libRist “Roadmap:” the Original “Interoperability” Goal

Bearing in mind that this was the original RIST goal, we think that we’ve now got enough vendors, plus with the libRIST FOSS implementation, we believe that interoperability among packet recovery applications is now a reality.

Additionally, with the liberal licensing of libRIST, there’s no reason that any foss project should think they can’t easily and quickly link in a library to support RIST flavor packet recovery into any encoder/decoder branded product.
Live Streaming End-to-End with Packet Recovery
Live Streaming: Architectural Overview

Sender

- Input Port
- EAP SRP 6a Authorization
- Output Port
- Hash File and/or Billing System Messaging

Receiver
Live Streaming: Architectural Overview

Sender such as ffmpeg, etc.

Sender
- Input Port
- EAP SRP 6a Authorization
- Output Port
- Hash File and/or Billing System Messaging

Receiver
Live Streaming: Architectural Overview

Sources

Input Port

EAP SRP 6a Authorization

Output Port

Hash File and/or Billing System Messaging

Sender

Receiver

Handshake: Exchange of messages containing a username and passphrase hash.
Live Streaming: Architectural Overview

If username found, the next messaging provides the passphrase hash. This is checked against the passphrase store.

EAP SRP 6a Authorization

Hash File and/or Billing System Messaging
Live Streaming: Architectural Overview

We can now switch to PSK, and send a key for decrypting the stream... and then start sending the stream itself.
Live Streaming: Latency

- With planning, a 300ms glass-to-glass latency can be achieved
- (Obviously this assumes a good network quality and proximity)
- We already achieved this anywhere within the U.S.
- When expanding the audience to borderline-quality or inter-continental audiences, of course latency increases... but it’s still superior to HLS/DASH.
Live Streaming: Cloud Deployment

We have a *rist2rist* utility

- It acts as a relay. It doesn’t decrypt or encrypt.
- It can live in a central cloud or in multiple CDN-type locations.
- It features the listener/auth, so can act as a gatekeeper.
- Adds no appreciable latency since it doesn’t decrypt the stream.
- Thus, you can put your source and first sender on your end, multiple rist2rist’s in the cloud, and create a virtual CDN
Live Streaming: Scalability

“Quality”

- When using h264/av1 compression, the “sweet spot” seems to be between 3 to 5Mbps for 720p or 1080p streams. This traverses most corporate VPNs and can be handled by any hardware device.

“Quantity”

- Each rist2rist can handle up to 100 simultaneous connections and still deliver bullet proof packet loss protection. The system can scale by starting more processes. Our largest installation has more than 1500 simultaneous viewers monitoring/producing day in, day out, spread across two continents, viewing multiple streams of very high or ultra high quality. Performance, up time, ease of switching program-to-program etc. is rock solid.
`$ritsrppasswd`
Usage: ristsrppasswd [username] [password]
`$ritsrppasswd` username@somewhere.com MyPassphrase > /tmp/passstore
`$ritsrppasswd` othername@somewhere.com OtherPassphrase >> /tmp/passstore
`$cat` /tmp/passstore
username@somewhere.com:BK/egnzdAkUmH5cQxpxfNi OTPYu8Cj5qmaZMsW7Rw2qYEPgzAgshhp2d4VwfwteCEVzstrKCEgzpUTgH6wbb/IRjD1k7f1YfrTUPf10KjttUSD6nmpMadCVkVmplQ+3wpMVyU9Et0E V9f2pUbW7KhXFldynruTZI5eI6CG+ruUAdkuzvzUGOtT/UrQadF1ehW7o+E1ekLUo9kGN91CK/HHyozccC8p/+Ly1LqjdJ3nvGbG8CNNQvW7u5LAYtBE0BxNR0d85+bbjspn2kS6jb75nJARDKUO/RoomkWytEA7qNqBeW8qX0Pof9NJao8TFZhz4ShAienGX808MHcTztw:EFJn6Wzs3C0L9P102mRkcsyR6nWyxtC vhmnbZPPh8:3
othername@somewhere.com:N5XCjnVHaeVF1GG0k47fnrmeMjn9l71PsRlu79LP9I78SHPtHEqd0CS3Qkqx0rS5is4DUNLSnvCQgsWEoKhh+qbfCaoDuWupi+N08cGysS3wjN1FLSTwXy2jUdoMko0SfvaQwHxro1wBYrDNQ3pUJgTq1djhupXIMEc01GTJyj8T+ArTAMrWG3ATB6Ap8DBqQlduzYbdwygniV9zB+xEYZyD6kGkDg4RILFcuxHFJCNI7/37/NpbZ+WvPN8eb9k0HimVX80n5L85056pYMCC4Rbzd7IijIBFG3xnB/eUJwhGDuGm8ldyOd+Vg5ffylJK87y9G2xJMMjLxFco9Pq:aob0wo0mfW00B9/VEt/j7hjHAzq8PPSmK5cT9/B/R8k:3
$
Command Line: Sender

```plaintext
ristsender --inputurl udp://127.0.0.1:8192 --encryption-type 256 --secret preshared-passphrase --profile 1 --srpfile /tmp/passstore --outputurl rist://@127.0.0.1:10001
1706467862.727016|0.0|[INFO] Starting ristsender version: v0.2.7-27-g234c2e2 libRIST library: v0.2.7-27-g234c2e2 API version: 4.2.0
1706467862.727136|0.0|[INFO] Assigning stream-id 0 to this input
1706467862.727178|0.0|[INFO] Starting in Main Profile Mode
1706467862.727194|0.0|[INFO] RIST Sender Library v0.2.7-27-g234c2e2
1706467862.727212|0.0|[INFO] Link configured with maxrate=1000000 bufmin=1000 bufmax=1000 reorder=25 rttmin=50 rttmax=500 congestion_control=1 min_retries=6 max_retries=20
1706467862.727218|0.139954411921424|[INFO] Using 256 bits secret key
1706467862.727228|0.139954411921424|[INFO] URL parsed successfully: Host 127.0.0.1, Port 10001
1706467862.727287|0.139954411921424|[INFO] Starting in URL listening mode (socket# 4)
1706467862.727298|0.139954411921424|[INFO] Configured the starting socket receive buffer size to 419430 Bytes.
1706467862.727305|0.139954411921424|[INFO] Configured the starting socket send buffer size to 419430 Bytes.
1706467862.727314|0.139954411921424|[INFO] Peer cname is XEON@127.0.0.1:10001
1706467862.727320|0.139954411921424|[INFO] Setting max nacks per cycle to 88
1706467862.727323|0.139954411921424|[INFO] Setting buffer size to 2000ms (Max buffer size + 2 * Max RTT)
```
Receiver Side

- You probably want the client viewer to present a dialog box for user name and passphrase *need to convince VLC to allow this for RIST input modules
- You probably want to handle the “secret” parameter behind the scenes
- With that, all that’s needed is to mirror the parameters set up on the RIST sender
Live Streaming: Summary

EAP SRP 6a Authentication

- Secure handshake, hashed password store similar to Apache, AES encryption once authenticated, key rotation, easy back-end communications with accounting or similar store for authorizations
- With the Sender in “Listen” mode enables many, many receivers
- Ability to incorporate a degree of forward error correction in addition to backwards error correction for very, very large audiences as per RIST spec
- Multicast addressing as per RIST spec

Security of Stream

- AES encryption combined with highly secure authorization coordinated with existing billing systems provides as much as, if not more security of DRM over https transport – over much faster udp transport. And adding an option for a minimal degree of forward error correction could enable incredibly huge audiences. Note also that DRM via HLS/DASH over http/tcp can be encapsulated, if necessary, over VPN like RIST connections, though it won't enjoy as much of a speed boost
Conclusion

libRIST Development “Roadmap” Solid

- Improvements in “Reach” and Features
- Boast Stands: We Think We’ve Achieved the Original “Interoperability” Goal!

Live Streaming End-to-End w/ Packet Recovery

- High Quality Source Tools Compatible with libRIST
- Supports very Large Audiences
- Security for the IP/Content
Thank You

Live Streaming End-to-End with Packet Recovery and libRIST Development Roadmap

By Sergio Ammirata, Ph.D.