
• Ryan Booz

• FOSDEM Postgres Devroom 2024

PostgreSQL & DevOps
Advocate

@ryanbooz

/in/ryanbooz

www.softwareandbooz.com

youtube.com/@ryanbooz

https://twitter.com/ryanbooz
https://www.linkedin.com/in/ryanbooz/
http://www.softwareandbooz.com/
https://twitter.com/ryanbooz

The Building Blocks

Roles

Special Roles

Privileges

Inheritance

Object Ownership

Predefined Roles

Cluster Cluster Cluster

Server/Host (Firewall, Ports)

Port: 5432

pg_hba.conf

Port: 5433

pg_hba.conf

Port: 5434

pg_hba.conf

ROLES

Cluster

Databases

Database

Cluster

ROLE

• First layer of authentication

• Similar to a firewall ruleset for PostgreSQL

• Cloud vendors largely manage this for you

Which hosts & roles, can connect to what databases,
using what authentication method?

Allow any user on the local system to connect to any database with
any database user name using Unix-domain sockets (the default for local
connections).
#
TYPE DATABASE USER ADDRESS METHOD
local all all trust

The same using local loopback TCP/IP connections.
#
TYPE DATABASE USER ADDRESS METHOD
host all all 127.0.0.1/32 trust

Allow any user from host 192.168.12.10 to connect to database
"postgres" if the user's password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.12.10/32 scram-sha-256

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

• Own databases, schemas, and objects

• Tables, Functions, Views, Etc.

• Have cluster-level privileges (attributes)

• Granted privileges to databases, schemas, and

objects

• Can possibly grant privileges to other roles

• Semantically the same as roles

• By Convention:

• User = LOGIN

• Group = NOLOGIN

• PostgreSQL 8.2+ CREATE (USER|GROUP) is an

alias

CREATE ROLE user1 WITH LOGIN PASSWORD 'abc123' INHERIT;

CREATE USER user1 WITH PASSWORD 'abc123' INHERIT;

CREATE GROUP group1 WITH INHERIT;

• Predefined settings that can be enabled/disabled

for a given role

• Essentially cluster-level (non-database) privileges

• Map to columns in pg_catalog.pg_roles

LOGIN

SUPERUSER

CREATEROLE

CREATEDB

REPLICATION LOGIN

PASSWORD

INHERIT

BYPASSRLS

CONNECTION LIMIT

• Roles can set role-specific defaults for run-time

configuration at connection time

• Any settings that can be set via SET command can

be altered for a ROLE

ALTER ROLE user1 SET jit TO off;

ALTER ROLE user1 RESET jit;

This Photo by Unknown Author is licensed under CC BY-NC-ND

https://www.rickchung.com/2018/12/spider-verse-movie-review.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

• is created by default when the cluster is initialized

• Typically named postgres because the system

process user initiates a initdb

• Bypasses all security checks except LOGIN

• Full privilege to do "anything"

• Treat superuser with care (like root on Linux)

• Create a role with the right level of control

• Recommend adding CREATEROLE and CREATEDB

• Allows user management and database ownership

• May still limit some actions (e.g. installing

extensions limited to superuser)

• The set of access rights to databases, schemas,

and objects

• Can be granted (GRANT) or revoked (REVOKE) by a

role with authority

• Explicit GRANT or REVOKE only impacts existing

objects

SELECT

INSERT

UPDATE

DELETE

TRUNCATE

REFERENCES

TRIGGER

CREATE

CONNECT

TEMPORARY

EXECUTE

USAGE

SET

ALTER SYSTEM

• All roles are granted implicit membership to PUBLIC

• The public role cannot be deleted

• Granted CONNECT, USAGE, TEMPORARY, and EXECUTE

by default

• <=PG14: CREATE on the public schema by default

• >=PG15: No CREATE on public schema by default

• Revoke all privileges on the public schema from the

PUBLIC role

• Revoke all database privileges from the PUBLIC

role (maybe)

REVOKE ALL ON SCHEMA public FROM PUBLIC;

REVOKE ALL ON DATABASE db_name FROM PUBLIC;

-- grant the ability to create a schema

GRANT CREATE ON DATABASE app_db TO admin1;

-- see and create objects in schema

GRANT USAGE,CREATE IN SCHEMA demo_app TO dev1;

-- allow some roles only some privileges

GRANT SELECT,INSERT,UPDATE

ON ALL TABLES IN SCHEMA demo_app TO jr_dev;

• Remember, explicit grants only effect existing

database objects!

-- This will only grant to existing objects

GRANT ALL TO ALL TABLES IN SCHEMA public TO dev1;

What the privileges mean:

https://www.postgresql.org/docs/current/ddl-priv.html

How to GRANT privileges:

https://www.postgresql.org/docs/current/sql-grant.html

How to REVOKE privileges:

https://www.postgresql.org/docs/current/sql-revoke.html

https://www.postgresql.org/docs/current/ddl-priv.html
https://www.postgresql.org/docs/current/sql-grant.html
https://www.postgresql.org/docs/current/sql-revoke.html

• Roles can be granted membership into another role

• If a role has INHERIT set, they automatically have

usage of privileges from member roles

• The preferred method for managing group privileges

CREATE ROLE sr_dev WITH LOGIN password='abc' INHERIT;

CREATE ROLE rptusr WITH LOGIN password='123' INHERIT;

CREATE ROLE admin WITH NOLOGIN NOINHERIT;

CREATE ROLE ropriv WITH NOLOGIN NOINHERIT;

GRANT INSERT,UPDATE,DELETE ON ALL TABLES

 IN SCHEMA app TO admin;

GRANT SELECT ON ALL TABLES IN SCHEMA app TO ropriv;

GRANT admin,ropriv TO sr_dev;

GRANT ropriv TO rptusr;

ropriv

sr_devrptusr

SELECT SELECT

ropriv admin

sr_devrptusr

SELECT SELECT, INSERT,
UPDATE, DELETE

• Object creator = owner

• Owner is a "superuser" of the objects they own

• Initial object access = Principle of Least Privilege

• Unless specifically granted ahead of time, objects are owned

and "accessible" by the creator/superuser only

• Roles can specify default privileges to GRANT for each

object type that they create

Database

Cluster

ROLE

Database

Cluster

ROLE

ALTER DEFAULT PRIVILEGES

GRANT SELECT ON TABLES TO public;

cituscon=> \ddp

 Default access privileges

 Owner | Schema | Type | Access privileges

----------+--------+-------+---------------------------

 postgres | | table | =r/postgres +

 | | | postgres=arwdDxt/postgres

Option 1: (owner)

Explicitly GRANT access

after object creation

Option 4: (PG14+)

Use pg_read_all_data

or pg_write_all_data

predefined roles

Option 2: (owner)

ALTER DEFAULT

PRIVILEGES

Option 3:

SET ROLE to app role

before creation with

correct default privileges

• CREATE OR REPLACE doesn't change ownership

• Security issue with users that have create

permissions (particularly the public schema)

• PostgreSQL 15 removes default create permissions

from PUBLIC on the public schema

• Cluster-level roles that can be granted

• Work starting in PostgreSQL 14+ to simplify

privilege management

• pg_read_all_data (for example)

• If a role that has CONNECT to a database, they can SELECT

from all tables

https://www.postgresql.org/docs/current/predefined-roles.html

https://www.postgresql.org/docs/current/predefined-roles.html

	Intro slide
	Slide 1
	Slide 2
	Slide 3: github.com/ryanbooz/presentations
	Slide 4: Agenda
	Slide 5: Disclaimer(s)
	Slide 6: We won't cover everything
	Slide 7: Content is applicable to currently supported versions of PostgreSQL (12+)
	Slide 8
	Slide 9: 01/07 The Building Blocks
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: pg_hba.conf
	Slide 15
	Slide 16: Avoid using 'TRUST' method at all costs!*
	Slide 17: Use scram-sha-256 for password authentication
	Slide 18: 02/07 Roles
	Slide 19
	Slide 20: Roles
	Slide 21: Users and Groups
	Slide 22
	Slide 23: Role Attributes
	Slide 24: PostgreSQL 15 Attributes
	Slide 25: Unless otherwise set, new roles can INHERIT privileges from other roles and have unlimited connections
	Slide 26: Role Specific Session Settings
	Slide 27: 03/07 Special Roles
	Slide 28: PostgreSQL Superuser
	Slide 29: PostgreSQL Superuser
	Slide 30: PostgreSQL Superuser
	Slide 31: Most cloud providers do not provide superuser access
	Slide 32: Superuser-like
	Slide 33: Superuser-like
	Slide 34: 04/07 Privileges
	Slide 35
	Slide 37: Privileges
	Slide 38: PostgreSQL 15 Privileges
	Slide 39: PUBLIC Role
	Slide 40: Security Best Practice for PUBLIC
	Slide 41: Granting Privileges
	Slide 42: Granting Privileges
	Slide 43: More Detail on GRANT and REVOKE
	Slide 44: 05/07 Inheritance
	Slide 45: Privilege Inheritance
	Slide 46: Granting Privileges
	Slide 47
	Slide 48
	Slide 49: 06/07 Object Ownership
	Slide 50
	Slide 51: Object Ownership
	Slide 52
	Slide 53
	Slide 54: Default Privileges
	Slide 55: Providing Object Access
	Slide 56: Object Ownership Security
	Slide 57: DEMO
	Slide 58: 07/07 Predefined Roles
	Slide 59: Predefined Roles
	Slide 60
	Slide 61: What Questions do you have?
	Slide 62: 🎉 THANK YOU! 🎉 github.com/ryanbooz/presentations

