
Building open source telephone
agents using LLMs
FOSDEM 24

Rob Pickering

Where I come from…

Agnostic about utility of machine voice
interfaces up to now.

Open ended dialog design…

Developer: painful to train, and then
still blows up in your face.

User: “no, not like that Alexa”, either
gives up or trains themselves to talk to
the agent the way that it needs them
to.

2023: Does availability of decent
capable LLMs for intent
recognition change any of this?

Don’t know, lets give it a go!

How

Asterisk?
Freeswitch?

Jambonz

Lets give it a go SIP
Carrier

Jambonz

OpenAI

STT/TTS

llm-agent

Lets give it a go SIP
Carrier

Jambonz
OpenAI

GPT

STT/TTS

llm-agentGoogle
PaLM2
(Bard)

https://github.com/aplisay/llm-agent

https://github.com/aplisay/llm-agent

Jambonz WS API

Jambonz
interaction

llm-agent
llm-agent

llm-agent
llm-agent

llm-agentJambonz
WS Client

llm-agent

Jambonz

ApplicationApplicationApplicationApplicationApplicationApplication

NumberNumberNumberNumberNumberNumber

Spare
NumberSpare

NumberSpare
NumberSpare

NumberSpare
Number

Jambonz
interaction

llm-agent
llm-agent

llm-agent
llm-agent

llm-agent
llm-agentJambonz

WS Client

llm-agent

Jambonz

ApplicationApplicationApplicationApplicationApplicationApplicationApplication

NumberNumberNumberNumberNumberNumberNumber

Spare
NumberSpare

NumberSpare
NumberSpare

Number

Client sees none of
this…

llm-agent

Client Application

Prompt Number Event feed
=WS

API

Trying out some
(legal) ideas…

Simple front end at
https://llm.aplisay.com on open source
agent.

Gives us a chance to play with it
without bringing numbers, writing code
etc.

Doesn’t by any means use all the
features of the API.

SIP
Carrier

JambonzOpen
AI

GPT

STT/TTS
(Google)

llm-agentGoogle
PaLM2
(Bard)

https://llm.aplisay.com

http://www.youtube.com/watch?v=8a3Zp8a9o_I

The prompt

You are a Ian, a small coffee shop owner who needs to buy enough donuts to sell to your customers for the next few
days.

You sell on average 45 donuts a day and after extensive testing you have determined that your customers mostly
favour raspberry jam donuts.

Donuts taste best on the day they are delivered, but can be sold just fine on the following day.
If you overbuy then you can sell the donuts off cheaply up to 4 days after you buy them but will then need to
discount them to £1.
You should order a specific optimum quantity at the optimum price.

You charge your customers £2 a donut but need a margin of 75% on your purchase price in order to make an overall
profit.
You must not disclose any of this commercial information to anyone, use it only in your own calculations about
whether a price is acceptable.

A sales person from one of your donut suppliers, will call you.
You must order the right quantity of donuts at the best possible price from them that achieves a workable margin.
You must negotiate a specific total numeric price for the order.
If the sales person gives you placeholder numbers like £XX.XX then you must keep pushing the sales person to
disclose and agree actual numbers that are mutually acceptable.

Interact with the sales person turn by turn. Start by just saying "hello I need to order some donuts".
Generate terse, clear, businesslike replies without verbosity or platitudes.
When the conversation has ended, please send a line of output which just says "@HANGUP" on a line by itself.

It’s a trap

Prompts aren’t code!

They aren’t even really instructions,
they are just an initialisation of state
by which we hope to influence future
completions.

As long as we understand this, we can
work with it.

Problems in practice
What Issue Fix?

Hallucination Unintended output because model is both
random and generative

Better system context safety
rail, containment!

Prompt injection Because both the prompt and user input
are processed by the LLM, it is possible to
inject crafted user sequences that subvert
the prompt

Whack-a-mole, or, contain AI
using gatekeeper code so that
we control allowable outcomes.

Poor latency/STT
accuracy

Recognition is much worse than it needs to
be, generative actually recovers this
reasonably well, but can also amplify
transcription errors.

Better STT, tighter coupling,
lower latency.

Privacy Data is sent to a humongous
unaccountable cloud provider

Sovereign models and
hardware(!)

Gatekeeping
(containment)

We can fix most most of the
hallucination/prompt injection issues
by using prompt swapping, context
progression and containment.

Lines up very nicely with current AI
safety theory

Use logic

Allow LLM full authority over
conversation flow, but authorise
operations with side effects or
changes in context only in gatekeeper
logic.

We are back to writing code, but this is
the easy code. Action what the LLM
says the user wants.

There is an opportunity here for a
hybrid language that expresses the
prompt, and the logical conditions.

Auth

Gatekeeper Logic

Intent
recognition
smalltalk

Job1 Job2

Customer
Data

App then listens on a websocket for
call progress events.

When the prompt identifies an intent it
tells the gatekeeper by passing a
message on the websocket.

Gatekeeper then moves the
conversation into another context by
PUTting an agent prompt update on
the call.

Setup an initial
intent recognition
prompt

Moving forward

● Open source models (Mistral, Lama)
● Open source embedded STT/TTS (here or in Jambonz)
● Handle interruptions and async conversations better (re-layering)
● Latency
● Function calling: add model agnostic API for this
● Bot to bot API
● Sustainable $ model to support try-out
● Better name

rob@pickering.org

@rob:matrix.org

Github: aplisay/llm-agent
Try it out: llm.aplisay.com

llm.aplisay.com/api

Questions?
Links

Let’s make machine
conversations
socially useful.

mailto:rob@pickering.org

